期刊文献+
共找到127篇文章
< 1 2 7 >
每页显示 20 50 100
Crack Fault Diagnosis and Location Method for a Dual-Disk Hollow Shaft Rotor System Based on the Radial Basis Function Network and Pattern Recognition Neural Network
1
作者 Yuhong Jin Lei Hou +1 位作者 Zhenyong Lu Yushu Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第2期180-197,共18页
The crack fault is one of the most common faults in the rotor system,and researchers have paid close attention to its fault diagnosis.However,most studies focus on discussing the dynamic response characteristics cause... The crack fault is one of the most common faults in the rotor system,and researchers have paid close attention to its fault diagnosis.However,most studies focus on discussing the dynamic response characteristics caused by the crack rather than estimating the crack depth and position based on the obtained vibration signals.In this paper,a novel crack fault diagnosis and location method for a dual-disk hollow shaft rotor system based on the Radial basis function(RBF)network and Pattern recognition neural network(PRNN)is presented.Firstly,a rotor system model with a breathing crack suitable for a short-thick hollow shaft rotor is established based on the finite element method,where the crack's periodic opening and closing pattern and different degrees of crack depth are considered.Then,the dynamic response is obtained by the harmonic balance method.By adjusting the crack parameters,the dynamic characteristics related to the crack depth and position are analyzed through the amplitude-frequency responses and waterfall plots.The analysis results show that the first critical speed,first subcritical speed,first critical speed amplitude,and super-harmonic resonance peak at the first subcritical speed can be utilized for the crack fault diagnosis.Based on this,the RBF network and PRNN are adopted to determine the depth and approximate location of the crack respectively by taking the above dynamic characteristics as input.Test results show that the proposed method has high fault diagnosis accuracy.This research proposes a crack detection method adequate for the hollow shaft rotor system,where the crack depth and position are both unknown. 展开更多
关键词 Hollow shaft rotor Breathing crack radial basis function network Pattern recognition neural network Machine learning
下载PDF
Evolution Performance of Symbolic Radial Basis Function Neural Network by Using Evolutionary Algorithms
2
作者 Shehab Abdulhabib Alzaeemi Kim Gaik Tay +2 位作者 Audrey Huong Saratha Sathasivam Majid Khan bin Majahar Ali 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期1163-1184,共22页
Radial Basis Function Neural Network(RBFNN)ensembles have long suffered from non-efficient training,where incorrect parameter settings can be computationally disastrous.This paper examines different evolutionary algor... Radial Basis Function Neural Network(RBFNN)ensembles have long suffered from non-efficient training,where incorrect parameter settings can be computationally disastrous.This paper examines different evolutionary algorithms for training the Symbolic Radial Basis Function Neural Network(SRBFNN)through the behavior’s integration of satisfiability programming.Inspired by evolutionary algorithms,which can iteratively find the nearoptimal solution,different Evolutionary Algorithms(EAs)were designed to optimize the producer output weight of the SRBFNN that corresponds to the embedded logic programming 2Satisfiability representation(SRBFNN-2SAT).The SRBFNN’s objective function that corresponds to Satisfiability logic programming can be minimized by different algorithms,including Genetic Algorithm(GA),Evolution Strategy Algorithm(ES),Differential Evolution Algorithm(DE),and Evolutionary Programming Algorithm(EP).Each of these methods is presented in the steps in the flowchart form which can be used for its straightforward implementation in any programming language.With the use of SRBFNN-2SAT,a training method based on these algorithms has been presented,then training has been compared among algorithms,which were applied in Microsoft Visual C++software using multiple metrics of performance,including Mean Absolute Relative Error(MARE),Root Mean Square Error(RMSE),Mean Absolute Percentage Error(MAPE),Mean Bias Error(MBE),Systematic Error(SD),Schwarz Bayesian Criterion(SBC),and Central Process Unit time(CPU time).Based on the results,the EP algorithm achieved a higher training rate and simple structure compared with the rest of the algorithms.It has been confirmed that the EP algorithm is quite effective in training and obtaining the best output weight,accompanied by the slightest iteration error,which minimizes the objective function of SRBFNN-2SAT. 展开更多
关键词 Satisfiability logic programming symbolic radial basis function neural network evolutionary programming algorithm genetic algorithm evolution strategy algorithm differential evolution algorithm
下载PDF
A Novel Radial Basis Function Neural Network Approach for ECG Signal Classification
3
作者 S.Sathishkumar R.Devi Priya 《Intelligent Automation & Soft Computing》 SCIE 2023年第1期129-148,共20页
ions in the ECG signal.The cardiologist and medical specialistfind numerous difficulties in the process of traditional approaches.The specified restrictions are eliminated in the proposed classifier.The fundamental ai... ions in the ECG signal.The cardiologist and medical specialistfind numerous difficulties in the process of traditional approaches.The specified restrictions are eliminated in the proposed classifier.The fundamental aim of this work is tofind the R-R interval.To analyze the blockage,different approaches are implemented,which make the computation as facile with high accuracy.The information are recovered from the MIT-BIH dataset.The retrieved data contain normal and pathological ECG signals.To obtain a noiseless signal,Gaborfilter is employed and to compute the amplitude of the signal,DCT-DOST(Discrete cosine based Discrete orthogonal stock well transform)is implemented.The amplitude is computed to detect the cardiac abnormality.The R peak of the underlying ECG signal is noted and the segment length of the ECG cycle is identified.The Genetic algorithm(GA)retrieves the primary highlights and the classifier integrates the data with the chosen attributes to optimize the identification.In addition,the GA helps in performing hereditary calculations to reduce the problem of multi-target enhancement.Finally,the RBFNN(Radial basis function neural network)is applied,which diminishes the local minima present in the signal.It shows enhancement in characterizing the ordinary and anomalous ECG signals. 展开更多
关键词 Electrocardiogram signal gaborfilter discrete cosine based discrete orthogonal stock well transform genetic algorithm radial basis function neural network
下载PDF
Local Radial Basis Function Methods: Comparison, Improvements, and Implementation
4
作者 Scott A. Sarra 《Journal of Applied Mathematics and Physics》 2023年第12期3867-3886,共20页
Radial Basis Function methods for scattered data interpolation and for the numerical solution of PDEs were originally implemented in a global manner. Subsequently, it was realized that the methods could be implemented... Radial Basis Function methods for scattered data interpolation and for the numerical solution of PDEs were originally implemented in a global manner. Subsequently, it was realized that the methods could be implemented more efficiently in a local manner and that the local approaches could match or even surpass the accuracy of the global implementations. In this work, three localization approaches are compared: a local RBF method, a partition of unity method, and a recently introduced modified partition of unity method. A simple shape parameter selection method is introduced and the application of artificial viscosity to stabilize each of the local methods when approximating time-dependent PDEs is reviewed. Additionally, a new type of quasi-random center is introduced which may be better choices than other quasi-random points that are commonly used with RBF methods. All the results within the manuscript are reproducible as they are included as examples in the freely available Python Radial Basis Function Toolbox. 展开更多
关键词 radial basis functions Shape Parameter Selection Quasi-Random Centers Numerical PDEs Scientific Computing Open Source Software Python Programming Language Reproducible Research
下载PDF
A Numerical Method for Solving Ill-Conditioned Equation Systems Arising from Radial Basis Functions
5
作者 Edward J. Kansa 《American Journal of Computational Mathematics》 2023年第2期356-370,共15页
Continuously differentiable radial basis functions (C<sup>∞</sup>-RBFs), while being theoretically exponentially convergent are considered impractical computationally because the coefficient matrices are ... Continuously differentiable radial basis functions (C<sup>∞</sup>-RBFs), while being theoretically exponentially convergent are considered impractical computationally because the coefficient matrices are full and can become very ill- conditioned. Similarly, the Hilbert and Vandermonde have full matrices and become ill-conditioned. The difference between a coefficient matrix generated by C<sup>∞</sup>-RBFs for partial differential or integral equations and Hilbert and Vandermonde systems is that C<sup>∞</sup>-RBFs are very sensitive to small changes in the adjustable parameters. These parameters affect the condition number and solution accuracy. The error terrain has many local and global maxima and minima. To find stable and accurate numerical solutions for full linear equation systems, this study proposes a hybrid combination of block Gaussian elimination (BGE) combined with arbitrary precision arithmetic (APA) to minimize the accumulation of rounding errors. In the future, this algorithm can execute faster using preconditioners and implemented on massively parallel computers. 展开更多
关键词 Continuously Differentiable radial basis functions Global Maxima and Minima Solutions of Ill-Conditioned Linear Equations Block Gaussian Elimination Arbitrary Precision Arithmetic
下载PDF
Radial Basis Function Interpolation and Galerkin Projection for Direct Trajectory Optimization and Costate Estimation 被引量:1
6
作者 Hossein Mirinejad Tamer Inanc Jacek M.Zurada 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第8期1380-1388,共9页
This work presents a novel approach combining radial basis function(RBF)interpolation with Galerkin projection to efficiently solve general optimal control problems.The goal is to develop a highly flexible solution to... This work presents a novel approach combining radial basis function(RBF)interpolation with Galerkin projection to efficiently solve general optimal control problems.The goal is to develop a highly flexible solution to optimal control problems,especially nonsmooth problems involving discontinuities,while accounting for trajectory accuracy and computational efficiency simultaneously.The proposed solution,called the RBF-Galerkin method,offers a highly flexible framework for direct transcription by using any interpolant functions from the broad class of global RBFs and any arbitrary discretization points that do not necessarily need to be on a mesh of points.The RBF-Galerkin costate mapping theorem is developed that describes an exact equivalency between the Karush-Kuhn-Tucker(KKT)conditions of the nonlinear programming problem resulted from the RBF-Galerkin method and the discretized form of the first-order necessary conditions of the optimal control problem,if a set of discrete conditions holds.The efficacy of the proposed method along with the accuracy of the RBF-Galerkin costate mapping theorem is confirmed against an analytical solution for a bang-bang optimal control problem.In addition,the proposed approach is compared against both local and global polynomial methods for a robot motion planning problem to verify its accuracy and computational efficiency. 展开更多
关键词 Costate estimation direct trajectory optimization Galerkin projection numerical optimal control radial basis function interpolation
下载PDF
A Gravity Forward Modeling Method based on Multiquadric Radial Basis Function 被引量:1
7
作者 LIU Yan LV Qingtian +4 位作者 HUANG Yao SHI Danian MENG Guixiang YAN Jiayong ZHANG Yongqian 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第S01期62-64,共3页
It is one of the most important part to build an accurate gravity model in geophysical exploration.Traditional gravity modelling is usually based on grid method,such as difference method and finite element method wide... It is one of the most important part to build an accurate gravity model in geophysical exploration.Traditional gravity modelling is usually based on grid method,such as difference method and finite element method widely used.Due to self-adaptability lack of division meshes and the difficulty of high-dimensional calculation. 展开更多
关键词 geophysical exploration gravity forward modeling mesh-free method radial basis function
下载PDF
Multiquadric Radial Basis Function Approximation Scheme for Solution of Total Variation Based Multiplicative Noise Removal Model 被引量:1
8
作者 Mushtaq Ahmad Khan Ahmed BAltamimi +4 位作者 Zawar Hussain Khan Khurram Shehzad Khattak Sahib Khan Asmat Ullah Murtaza Ali 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第1期55-88,共34页
This article introduces a fastmeshless algorithm for the numerical solution nonlinear partial differential equations(PDE)by Radial Basis Functions(RBFs)approximation connected with the Total Variation(TV)-basedminimiz... This article introduces a fastmeshless algorithm for the numerical solution nonlinear partial differential equations(PDE)by Radial Basis Functions(RBFs)approximation connected with the Total Variation(TV)-basedminimization functional and to show its application to image denoising containing multiplicative noise.These capabilities used within the proposed algorithm have not only the quality of image denoising,edge preservation but also the property of minimization of staircase effect which results in blocky effects in the images.It is worth mentioning that the recommended method can be easily employed for nonlinear problems due to the lack of dependence on a mesh or integration procedure.The numerical investigations and corresponding examples prove the effectiveness of the recommended algorithm regarding the robustness and visual improvement as well as peak-signal-to-noise ratio(PSNR),signal-to-noise ratio(SNR),and structural similarity index(SSIM)corresponded to the current conventional TV-based schemes. 展开更多
关键词 Denoised image multiplicative and speckle noises total variation(TV)filter Euler-Lagrange restoration equation multiquadric radial basis functions meshless and mesh-based schemes
下载PDF
Prediction of Parkinson’s Disease Using Improved Radial Basis Function Neural Network 被引量:1
9
作者 Rajalakshmi Shenbaga Moorthy P.Pabitha 《Computers, Materials & Continua》 SCIE EI 2021年第9期3101-3119,共19页
Parkinson’s disease is a neurogenerative disorder and it is difficult to diagnose as no therapies may slow down its progression.This paper contributes a novel analytic system for Parkinson’s Disease Prediction mecha... Parkinson’s disease is a neurogenerative disorder and it is difficult to diagnose as no therapies may slow down its progression.This paper contributes a novel analytic system for Parkinson’s Disease Prediction mechanism using Improved Radial Basis Function Neural Network(IRBFNN).Particle swarm optimization(PSO)with K-means is used to find the hidden neuron’s centers to improve the accuracy of IRBFNN.The performance of RBFNN is seriously affected by the centers of hidden neurons.Conventionally K-means was used to find the centers of hidden neurons.The problem of sensitiveness to the random initial centroid in K-means degrades the performance of RBFNN.Thus,a metaheuristic algorithm called PSO integrated with K-means alleviates initial random centroid and computes optimal centers for hidden neurons in IRBFNN.The IRBFNN uses Particle swarm optimization K-means to find the centers of hidden neurons and the PSO K-means was designed to evaluate the fitness measures such as Intracluster distance and Intercluster distance.Experimentation have been performed on three Parkinson’s datasets obtained from the UCI repository.The proposed IRBFNN is compared with other variations of RBFNN,conventional machine learning algorithms and other Parkinson’s Disease prediction algorithms.The proposed IRBFNN achieves an accuracy of 98.73%,98.47%and 99.03%for three Parkinson’s datasets taken for experimentation.The experimental results show that IRBFNN maximizes the accuracy in predicting Parkinson’s disease with minimum root mean square error. 展开更多
关键词 Improved radial basis function neural network K-MEANS particle swarm optimization
下载PDF
Path Loss Modeling: A Machine Learning Based Approach Using Support Vector Regression and Radial Basis Function Models 被引量:3
10
作者 Stephen Ojo Arif Sari Taiwo P. Ojo 《Open Journal of Applied Sciences》 2022年第6期990-1010,共21页
Path loss prediction models are vital for accurate signal propagation in wireless channels. Empirical and deterministic models used in path loss predictions have not produced optimal results. In this paper, we introdu... Path loss prediction models are vital for accurate signal propagation in wireless channels. Empirical and deterministic models used in path loss predictions have not produced optimal results. In this paper, we introduced machine learning algorithms to path loss predictions because it offers a flexible network architecture and extensive data can be used. We introduced support vector regression (SVR) and radial basis function (RBF) models to path loss predictions in the investigated environments. The SVR model was able to process several input parameters without introducing complexity to the network architecture. The RBF on its part provides a good function approximation. Hyperparameter tuning of the machine learning models was carried out in order to achieve optimal results. The performances of the SVR and RBF models were compared and result validated using the root-mean squared error (RMSE). The two machine learning algorithms were also compared with the Cost-231, SUI, Egli, Freespace, Cost-231 W-I models. The analytical models overpredicted path loss. Overall, the machine learning models predicted path loss with greater accuracy than the empirical models. The SVR model performed best across all the indices with RMSE values of 1.378 dB, 1.4523 dB, 2.1568 dB in rural, suburban and urban settings respectively and should therefore be adopted for signal propagation in the investigated environments and beyond. 展开更多
关键词 Support Vector Regression radial basis function Machine Learning Path Loss Empirical DETERMINISTIC
下载PDF
Development of Trees Management System Using Radial Basis Function Neural Network for Rain Forecast 被引量:1
11
作者 Hasnul Auzani Khairusy Syakirin Has-Yun Farah Aniza Mohd Nazri 《Computational Water, Energy, and Environmental Engineering》 2022年第1期1-10,共10页
Agriculture and farming are mainly dependent on weather especially in Malaysia as it received heavy rainfall throughout the years. An efficient crop or tree management system with a weather forecast needed for suitabl... Agriculture and farming are mainly dependent on weather especially in Malaysia as it received heavy rainfall throughout the years. An efficient crop or tree management system with a weather forecast needed for suitable planning of farming operation. Radial Basis Function Neural Network (RBFNN) algorithm was used in this study to predict rainfall and the main focus of this study is to analyze the factor that affect</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> the performance of neural model. This study found that the model works better the more hidden nodes and the optimum learning rate is 0.01 with the RMSE 49% and the percentage accuracy is 57%. Besides that, it is found that the meteorology data also affect the model performance. Future research can be conducted to improve the rainfall forecast of this study and improv</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">e</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> the tree management system. 展开更多
关键词 Tree Management radial basis function Rain Prediction Artificial Neural Network
下载PDF
Gaussian Radial Basis Function interpolation in vertical deformation analysis
12
作者 Mohammad Amin Khalili Behzad Voosoghi 《Geodesy and Geodynamics》 CSCD 2021年第3期218-228,共11页
In many deformation analyses,the partial derivatives at the interpolated scattered data points are required.In this paper,the Gaussian Radial Basis Functions(GRBF)is proposed for the interpolation and differentiation ... In many deformation analyses,the partial derivatives at the interpolated scattered data points are required.In this paper,the Gaussian Radial Basis Functions(GRBF)is proposed for the interpolation and differentiation of the scattered data in the vertical deformation analysis.For the optimal selection of the shape parameter,which is crucial in the GRBF interpolation,two methods are used:the Power Gaussian Radial Basis Functions(PGRBF)and Leave One Out Cross Validation(LOOCV)(LGRBF).We compared the PGRBF and LGRBF to the traditional interpolation methods such as the Finite Element Method(FEM),polynomials,Moving Least Squares(MLS),and the usual GRBF in both the simulated and actual Interferometric Synthetic Aperture Radar(InSAR)data.The estimated results showed that the surface interpolation accuracy was greatly improved by LGRBF and PGRBF methods in comparison withFEM,polynomial,and MLS methods.Finally,LGRBF and PGRBF interpolation methods are used to compute invariant vertical deformation parameters,i.e.,changes in Gaussian and mean Curvatures in the Groningen area in the North of Netherlands. 展开更多
关键词 Interpolation accuracy Gaussian radial basis functions Finite Element Method INSAR Vertical deformation
原文传递
A numerical method based on boundary integral equations and radial basis functions for plane anisotropic thermoelastostatic equations with general variable coefficients
13
作者 W.T.ANG X.WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第4期551-566,共16页
A boundary integral method with radial basis function approximation is proposed for numerically solving an important class of boundary value problems governed by a system of thermoelastostatic equations with variable ... A boundary integral method with radial basis function approximation is proposed for numerically solving an important class of boundary value problems governed by a system of thermoelastostatic equations with variable coe?cients. The equations describe the thermoelastic behaviors of nonhomogeneous anisotropic materials with properties that vary smoothly from point to point in space. No restriction is imposed on the spatial variations of the thermoelastic coe?cients as long as all the requirements of the laws of physics are satis?ed. To check the validity and accuracy of the proposed numerical method, some speci?c test problems with known solutions are solved. 展开更多
关键词 elliptic partial differential equation variable coefficient boundary element method radial basis function anisotropic thermoelastostatics
下载PDF
High-precision chaotic radial basis function neural network model:Data forecasting for the Earth electromagnetic signal before a strong earthquake
14
作者 Guocheng Hao Juan Guo +2 位作者 Wei Zhang Yunliang Chen David AYuen 《Geoscience Frontiers》 SCIE CAS CSCD 2022年第1期364-373,共10页
The Earth’s natural pulse electromagnetic field data consists typically of an underlying variation tendency of intensity and irregularities.The change tendency may be related to the occurrence of earthquake disasters... The Earth’s natural pulse electromagnetic field data consists typically of an underlying variation tendency of intensity and irregularities.The change tendency may be related to the occurrence of earthquake disasters.Forecasting of the underlying intensity trend plays an important role in the analysis of data and disaster monitoring.Combining chaos theory and the radial basis function neural network,this paper proposes a forecasting model of the chaotic radial basis function neural network to conduct underlying intensity trend forecasting by the Earth’s natural pulse electromagnetic field signal.The main strategy of this forecasting model is to obtain parameters as the basis for optimizing the radial basis function neural network and to forecast the reconstructed Earth’s natural pulse electromagnetic field data.In verification experiments,we employ the 3 and 6 days’data of two channels as training samples to forecast the 14 and 21-day Earth’s natural pulse electromagnetic field data respectively.According to the forecasting results and absolute error results,the chaotic radial basis function forecasting model can fit the fluctuation trend of the actual signal strength,effectively reduce the forecasting error compared with the traditional radial basis function model.Hence,this network may be useful for studying the characteristics of the Earth’s natural pulse electromagnetic field signal before a strong earthquake and we hope it can contribute to the electromagnetic anomaly monitoring before the earthquake. 展开更多
关键词 Earth’s natural pulse electromagnetic field Chaos theory radial basis function neural network Forecasting model
下载PDF
Mathematical modeling of fractional derivatives for magnetohydrodynamic fluid flow between two parallel plates by the radial basis function method
15
作者 Saman Hosseinzadeh Seyed Mahdi Emadi +1 位作者 Seyed Mostafa Mousavi Davood Domairry Ganji 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2022年第4期241-250,共10页
Investigations into the magnetohydrodynamics of viscous fluids have become more important in recent years,owing to their practical significance and numerous applications in astro-physical and geo-physical phenomena.In... Investigations into the magnetohydrodynamics of viscous fluids have become more important in recent years,owing to their practical significance and numerous applications in astro-physical and geo-physical phenomena.In this paper,the radial base function was utilized to answer fractional equation associated with fluid flow passing through two parallel flat plates with a magnetic field.The magnetohydrodynamics coupled stress fluid flows between two parallel plates,with the bottom plate being stationary and the top plate moving at a persistent velocity.We compared the radial basis function approach to the numerical method(fourth-order Range-Kutta)in order to verify its validity.The findings demonstrated that the discrepancy between these two techniques is quite negligible,indicating that this method is very reliable.The impact of the magnetic field parameter and Reynolds number on the velocity distribution perpendicular to the fluid flow direction is illustrated.Eventually,the velocity parameter is compared for diverse conditionsα,Reynolds and position(y),the maximum of which occurs atα=0.4.Also,the maximum velocity values occur inα=0.4 and Re=1000 and the concavity of the graph is less forα=0.8. 展开更多
关键词 Magnetohydrodynamic fluid Fractional equation radial basis function method Numerical method
下载PDF
Simulation of Oil-Water Flow in a Shale Reservoir Using a Radial Basis Function
16
作者 Zenglin Wang Liaoyuan Zhang +2 位作者 Anhai Zhong Ran Ding Mingjing Lu 《Fluid Dynamics & Materials Processing》 EI 2022年第6期1795-1804,共10页
Due to the difficulties associated with preprocessing activities and poor grid convergence when simulating shale reservoirs in the context of traditional grid methods,in this study an innovative two-phase oil-water se... Due to the difficulties associated with preprocessing activities and poor grid convergence when simulating shale reservoirs in the context of traditional grid methods,in this study an innovative two-phase oil-water seepage model is elaborated.The modes is based on the radial basis meshless approach and is used to determine the pressure and water saturation in a sample reservoir.Two-dimensional examples demonstrate that,when compared to the finite difference method,the radial basis function method produces less errors and is more accurate in predicting daily oil production.The radial basis function and finite difference methods provide errors of 5.78 percent and 7.5 percent,respectively,when estimating the daily oil production data for a sample well.A sensitivity analysis of the key parameters that affect the radial basis function’s computation outcomes is also presented. 展开更多
关键词 radial basis function reservoir numerical simulation meshless method oil-water two-phase flow
下载PDF
Comparative Study of Radial Basis Functions for PDEs with Variable Coefficients
17
作者 Fuzhang Wang Congcong Li Kehong Zheng 《Journal of Harbin Institute of Technology(New Series)》 CAS 2021年第6期91-96,共6页
The radial basis functions(RBFs)play an important role in the numerical simulation processes of partial differential equations.Since the radial basis functions are meshless algorithms,its approximation is easy to impl... The radial basis functions(RBFs)play an important role in the numerical simulation processes of partial differential equations.Since the radial basis functions are meshless algorithms,its approximation is easy to implement and mathematically simple.In this paper,the commonly⁃used multiquadric RBF,conical RBF,and Gaussian RBF were applied to solve boundary value problems which are governed by partial differential equations with variable coefficients.Numerical results were provided to show the good performance of the three RBFs as numerical tools for a wide range of problems.It is shown that the conical RBF numerical results were more stable than the other two radial basis functions.From the comparison of three commonly⁃used RBFs,one may obtain the best numerical solutions for boundary value problems. 展开更多
关键词 radial basis functions partial differential equations variable coefficient
下载PDF
Regional Logistics Demand Forecast Based on Least Square and Radial Basis Function
18
作者 魏乐琴 张安国 《Journal of Donghua University(English Edition)》 EI CAS 2020年第5期446-454,共9页
Regional logistics demand forecast is the basis for government departments to make logistics planning and logistics related policies.It has the characteristics of a small amount of data and being nonlinear,so the trad... Regional logistics demand forecast is the basis for government departments to make logistics planning and logistics related policies.It has the characteristics of a small amount of data and being nonlinear,so the traditional prediction method can not guarantee the accuracy of prediction.Taking Xiamen City as an example,this paper selects the primary industry,the secondary industry,the tertiary industry,the total amount of investment in fixed assets,total import and export volume,per capita consumption expenditure,and the total retail sales of social consumer goods as the influencing factors,and uses a combining model least square and radial basis function(LS-RBF)neural network to analyze the related data from years 2000 to 2019,so as to predict the logistics demand from years 2020 to 2024.The model can well fit the training data,and the experimental results obtained from the comparison between the predicted value and the actual value in 2019 show that the error rate is very small.Therefore,the prediction results are reasonable and reliable.This method has high prediction accuracy,and it is suitable for irregular regional logistics demand forecast. 展开更多
关键词 regional logistics demand forecast least square and radial basis function(LS-RBF)
下载PDF
A Comprehensive Price Prediction System Based on Inverse Multiquadrics Radial Basis Function for Portfolio Selection
19
作者 Mengmeng Zheng 《Applied Mathematics》 2021年第12期1189-1209,共21页
Price prediction plays a crucial role in portfolio selection (PS). However, most price prediction strategies only make a single prediction and do not have efficient mechanisms to make a comprehensive price prediction.... Price prediction plays a crucial role in portfolio selection (PS). However, most price prediction strategies only make a single prediction and do not have efficient mechanisms to make a comprehensive price prediction. Here, we propose a comprehensive price prediction (CPP) system based on inverse multiquadrics (IMQ) radial basis function. First, the novel radial basis function (RBF) system based on IMQ function rather than traditional Gaussian (GA) function is proposed and centers on multiple price prediction strategies, aiming at improving the efficiency and robustness of price prediction. Under the novel RBF system, we then create a portfolio update strategy based on kernel and trace operator. To assess the system performance, extensive experiments are performed based on 4 data sets from different real-world financial markets. Interestingly, the experimental results reveal that the novel RBF system effectively realizes the integration of different strategies and CPP system outperforms other systems in investing performance and risk control, even considering a certain degree of transaction costs. Besides, CPP can calculate quickly, making it applicable for large-scale and time-limited financial market. 展开更多
关键词 Comprehensive Price Prediction Portfolio Selection (PS) Inverse Multiquadrics (IMQ) radial basis function
下载PDF
Sensitivity Analysis of Radial Basis Function Networks for River Stage Forecasting
20
作者 Christian Walker Dawson 《Journal of Software Engineering and Applications》 2020年第12期327-347,共21页
<div style="text-align:justify;"> <span style="font-family:Verdana;">Sensitivity analysis of neural networks to input variation is an important research area as it goes some way to addr... <div style="text-align:justify;"> <span style="font-family:Verdana;">Sensitivity analysis of neural networks to input variation is an important research area as it goes some way to addressing the criticisms of their black-box behaviour. Such analysis of RBFNs for hydrological modelling has previously been limited to exploring perturbations to both inputs and connecting weights. In this paper, the backward chaining rule that has been used for sensitivity analysis of MLPs, is applied to RBFNs and it is shown how such analysis can provide insight into physical relationships. A trigonometric example is first presented to show the effectiveness and accuracy of this approach for first order derivatives alongside a comparison of the results with an equivalent MLP. The paper presents a real-world application in the modelling of river stage shows the importance of such approaches helping to justify and select such models.</span> </div> 展开更多
关键词 Artificial Neural Networks Backward Chaining Multi-Layer Perceptron Partial Derivative radial basis function Sensitivity Analysis River Stage Forecasting
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部