The accuracy of temperature measurement is often reduced due to random noise in Raman-based distributed temperature sensor (RDTS). A noise reduction method based on a nonlinear filter is thus proposed in this paper. C...The accuracy of temperature measurement is often reduced due to random noise in Raman-based distributed temperature sensor (RDTS). A noise reduction method based on a nonlinear filter is thus proposed in this paper. Compared with the temperature demodulation results of raw signals, the proposed method in this paper can reduce the average maximum deviation of temperature measurement results from 4.1°C to 1.2°C at 40.0°C, 50.0°C and 60.0°C. And the proposed method in this paper can improve the accuracy of temperature measurement of Raman-based distributed temperature sensor better than the commonly used wavelet transform-based method. The advantages of the proposed method in improving the accuracy of temperature measurement for Raman-based distributed temperature sensor are quantitatively reflected in the maximum deviation and root mean square error of temperature measurement results. Therefore, this paper proposes an effective and feasible method to improve the accuracy of temperature measurement results for Raman-based distributed temperature sensor.展开更多
A novel nonlinear mirror structure which can increase the optical signal-to-noise ratio of a distributed fiber Raman temperature sensor is proposed, and 6 dB improvement of the optical signal-to-noise ratio is obtaine...A novel nonlinear mirror structure which can increase the optical signal-to-noise ratio of a distributed fiber Raman temperature sensor is proposed, and 6 dB improvement of the optical signal-to-noise ratio is obtained. With the assistance of the nonlinear mirror, we demonstrate that the spatial resolution of the sensor is improved from 3 m to 1 m, and the temperature accuracy is improved from ±0.6℃ to ±0.2℃. The theoretical analysis and the experimental data are in good agreement.展开更多
The integration of distributed optical fiber temperature sensor with supervisory control and data acquisition (SCADA) system is proposed and implemented. In the implementation of the integration, both the compatibil...The integration of distributed optical fiber temperature sensor with supervisory control and data acquisition (SCADA) system is proposed and implemented. In the implementation of the integration, both the compatibility with traditional system and the characteristics of distributed optical fiber temperature sensor is considered before Modbus TCP/IP protocol is chosen. The protocol is implemented with open source component Indy. The Modbus TCP/IP protocol used in the system is proved to be fast and robust.展开更多
As fiber optic distributed scattering sensing systems are providing innovative solutions for the monitoring of large structures,the comparison of different techniques and solutions is difficult because of the lack of ...As fiber optic distributed scattering sensing systems are providing innovative solutions for the monitoring of large structures,the comparison of different techniques and solutions is difficult because of the lack of standardized specifications and the difficulty associated to the characterization of such systems.The article presents a tentative definition of performance specifications and qualification procedures applicable to fiber optic distributed sensing systems aiming at providing clear guidelines for their design,specifications,qualification,application and selection.展开更多
The influence of the wavelength dispersion on the temperature accuracy of the Raman distributed temperature sensor system (RDTS) is analyzed in detail, and a simple correction algorithm is proposed to compensate the...The influence of the wavelength dispersion on the temperature accuracy of the Raman distributed temperature sensor system (RDTS) is analyzed in detail, and a simple correction algorithm is proposed to compensate the fiber position error caused by the wavelength dispersion. The principle of the proposed algorithm is described theoretically, and the correction on each point along the entire fiber is realized. Temperature simulation results validate that the temperature distortion is corrected and the temperature accuracy is effectively improved from +5 ℃ to ±1 ℃.展开更多
We proposed and demonstrated a wavelet transform modulus maxima (WTMM) de-noising method to decrease the temperature error. In this scheme, the composition scale was determined simply by the WTMM amplitude variation...We proposed and demonstrated a wavelet transform modulus maxima (WTMM) de-noising method to decrease the temperature error. In this scheme, the composition scale was determined simply by the WTMM amplitude variation with the growth of the decomposition scale at 30 ℃, and the signal WTMM was obtained by the wavelet decomposition modulus on every decomposition scale based on the modulus propagating difference between the signal and noise. Then, we reconstructed the signal using the signal WTMM. Experimental results show that the proposed method is effective for de-noising, allowing for a temperature error decrease of about 1 ℃ at 40 ℃ and 50℃ comparing to the original data.展开更多
The fiber optic distributed temperature sensor (DTS) is one of the most outstanding means to measure temperature distribution along an optical fiber. In this paper, we propose a novel calibration technique to measur...The fiber optic distributed temperature sensor (DTS) is one of the most outstanding means to measure temperature distribution along an optical fiber. In this paper, we propose a novel calibration technique to measure the temperature highly accurately over a wide range of temperatures. We also propose an improved double-ended configuration that is insusceptible to the differential loss change in the fiber and suitable for the field use. Then, we developed an interrogator that had high robustness in harsh environments.展开更多
Weak signal detection for single-mode fiber-optic distributed temperature sensor (DTS) is a key technology to achieve better performance. A hybrid technique combining the incoherent optical frequency domain reflecto...Weak signal detection for single-mode fiber-optic distributed temperature sensor (DTS) is a key technology to achieve better performance. A hybrid technique combining the incoherent optical frequency domain reflectometry (IOFDR) and the three-channel simultaneous radio-frequency (RF) lock-in amplifier (LIA) is presented to improve the signal-to-noise ratio (SNR) of the measured spontaneous Raman backscattered light. The field programmable gate array (FPGA) based RF-LIA is designed with a novel and simple structure. The measurement frequency range is achieved from 1 kHz to 100 MHz. Experimental results show that the backscattered light signal of picowatt level can be detected with high SNR. With a 2.5kin single-mode fiber, a 1064nm laser source, and the measurement time of 500 s, this sensing system can reach a spatial resolution of 0.93 m and a temperature resolution of about 0.2℃.展开更多
The distribution transformer is the mainstay of the power system.Its internal temperature study is desirable for its safe operation in the power system.The purpose of the present study is to determine direct comprehen...The distribution transformer is the mainstay of the power system.Its internal temperature study is desirable for its safe operation in the power system.The purpose of the present study is to determine direct comprehensive thermal distribution in the distribution transformers for different loading conditions.To achieve this goal,the temperature distribution in the oil,core,and windings are studied at each loading.An experimental study is performed with a 10/0.38 kV,10 kVA oil–immersed transformer equipped with forty–two PT100 sensors(PTs)for temperature measurement installed inside during its manufacturing process.All possible locations for the hottest spot temperature(HST)are considered that made by finite element analysis(FEA)simulation and losses calculations.A resistive load is made to achieve 80%to 120%loading of the test transformer for this experiment.Working temperature is measured in each part of the transformer at all provided loading conditions.It is observed that temperature varies with loading throughout the transformer,and a detailed map of temperature is obtained in the whole test transformer.From these results,the HST stays in the critical section of the primary winding at all loading conditions.This work is helpful to understand the complete internal temperature layout and the location of the HST in distribution transformers.展开更多
A high sensitive fiber Bragg grating (FBG) strain sensor with automatic temperature compensation is demonstrated. FBG is axially linked with a stick and their free ends are fixed to the measured object. When the mea...A high sensitive fiber Bragg grating (FBG) strain sensor with automatic temperature compensation is demonstrated. FBG is axially linked with a stick and their free ends are fixed to the measured object. When the measured strain changes, the stick does not change in length, but the FBG does. When the temperature changes, the stick changes in length to pull the FBG to realize temperature compensation. In experiments, 1.45 times strain sensitivity of bare FBG with temperature compensation of less than 0.1 nm Bragg wavelength drift over 100 ℃ shift is achieved.展开更多
文摘The accuracy of temperature measurement is often reduced due to random noise in Raman-based distributed temperature sensor (RDTS). A noise reduction method based on a nonlinear filter is thus proposed in this paper. Compared with the temperature demodulation results of raw signals, the proposed method in this paper can reduce the average maximum deviation of temperature measurement results from 4.1°C to 1.2°C at 40.0°C, 50.0°C and 60.0°C. And the proposed method in this paper can improve the accuracy of temperature measurement of Raman-based distributed temperature sensor better than the commonly used wavelet transform-based method. The advantages of the proposed method in improving the accuracy of temperature measurement for Raman-based distributed temperature sensor are quantitatively reflected in the maximum deviation and root mean square error of temperature measurement results. Therefore, this paper proposes an effective and feasible method to improve the accuracy of temperature measurement results for Raman-based distributed temperature sensor.
基金supported by the National Natural Science Foundation of China under Grant No.60377021partially supported by Program for New Century Excellent Talents in University under Grant No. NCET-07-0152Sichuan Scientific Funds for Young Researchers under Grant No. 08ZQ026-012.
文摘A novel nonlinear mirror structure which can increase the optical signal-to-noise ratio of a distributed fiber Raman temperature sensor is proposed, and 6 dB improvement of the optical signal-to-noise ratio is obtained. With the assistance of the nonlinear mirror, we demonstrate that the spatial resolution of the sensor is improved from 3 m to 1 m, and the temperature accuracy is improved from ±0.6℃ to ±0.2℃. The theoretical analysis and the experimental data are in good agreement.
基金supported by the National Natural Science Foundation of China under Grant No. 60608009Science Foundation of Zhejiang Province under Grant No. Y107091 and ScienceTechnology Department of Zhejiang Province under Grant No. 2008C21172.
文摘The integration of distributed optical fiber temperature sensor with supervisory control and data acquisition (SCADA) system is proposed and implemented. In the implementation of the integration, both the compatibility with traditional system and the characteristics of distributed optical fiber temperature sensor is considered before Modbus TCP/IP protocol is chosen. The protocol is implemented with open source component Indy. The Modbus TCP/IP protocol used in the system is proved to be fast and robust.
文摘As fiber optic distributed scattering sensing systems are providing innovative solutions for the monitoring of large structures,the comparison of different techniques and solutions is difficult because of the lack of standardized specifications and the difficulty associated to the characterization of such systems.The article presents a tentative definition of performance specifications and qualification procedures applicable to fiber optic distributed sensing systems aiming at providing clear guidelines for their design,specifications,qualification,application and selection.
基金This work was supported by Natural Science Foundation of China (60977058), Science Fund for Distinguished Young Scholars of Shandong Province of China (JQ200819), Independent Innovation Foundation of Shandong University (IIFSDU2010JC002&2012JC015), and promotive research fund for excellent young and middle-aged scientists of Shandong Province (BS2010DX028).
文摘The influence of the wavelength dispersion on the temperature accuracy of the Raman distributed temperature sensor system (RDTS) is analyzed in detail, and a simple correction algorithm is proposed to compensate the fiber position error caused by the wavelength dispersion. The principle of the proposed algorithm is described theoretically, and the correction on each point along the entire fiber is realized. Temperature simulation results validate that the temperature distortion is corrected and the temperature accuracy is effectively improved from +5 ℃ to ±1 ℃.
基金This work was supported by the Natural Science Foundation of China (60977058 & 61307101), Independent Innovation Foundation of Shandong University (IIFSDU2012JC015) and the key technology projects of Shandong Province (2010GGX10137).
文摘We proposed and demonstrated a wavelet transform modulus maxima (WTMM) de-noising method to decrease the temperature error. In this scheme, the composition scale was determined simply by the WTMM amplitude variation with the growth of the decomposition scale at 30 ℃, and the signal WTMM was obtained by the wavelet decomposition modulus on every decomposition scale based on the modulus propagating difference between the signal and noise. Then, we reconstructed the signal using the signal WTMM. Experimental results show that the proposed method is effective for de-noising, allowing for a temperature error decrease of about 1 ℃ at 40 ℃ and 50℃ comparing to the original data.
文摘The fiber optic distributed temperature sensor (DTS) is one of the most outstanding means to measure temperature distribution along an optical fiber. In this paper, we propose a novel calibration technique to measure the temperature highly accurately over a wide range of temperatures. We also propose an improved double-ended configuration that is insusceptible to the differential loss change in the fiber and suitable for the field use. Then, we developed an interrogator that had high robustness in harsh environments.
文摘Weak signal detection for single-mode fiber-optic distributed temperature sensor (DTS) is a key technology to achieve better performance. A hybrid technique combining the incoherent optical frequency domain reflectometry (IOFDR) and the three-channel simultaneous radio-frequency (RF) lock-in amplifier (LIA) is presented to improve the signal-to-noise ratio (SNR) of the measured spontaneous Raman backscattered light. The field programmable gate array (FPGA) based RF-LIA is designed with a novel and simple structure. The measurement frequency range is achieved from 1 kHz to 100 MHz. Experimental results show that the backscattered light signal of picowatt level can be detected with high SNR. With a 2.5kin single-mode fiber, a 1064nm laser source, and the measurement time of 500 s, this sensing system can reach a spatial resolution of 0.93 m and a temperature resolution of about 0.2℃.
文摘The distribution transformer is the mainstay of the power system.Its internal temperature study is desirable for its safe operation in the power system.The purpose of the present study is to determine direct comprehensive thermal distribution in the distribution transformers for different loading conditions.To achieve this goal,the temperature distribution in the oil,core,and windings are studied at each loading.An experimental study is performed with a 10/0.38 kV,10 kVA oil–immersed transformer equipped with forty–two PT100 sensors(PTs)for temperature measurement installed inside during its manufacturing process.All possible locations for the hottest spot temperature(HST)are considered that made by finite element analysis(FEA)simulation and losses calculations.A resistive load is made to achieve 80%to 120%loading of the test transformer for this experiment.Working temperature is measured in each part of the transformer at all provided loading conditions.It is observed that temperature varies with loading throughout the transformer,and a detailed map of temperature is obtained in the whole test transformer.From these results,the HST stays in the critical section of the primary winding at all loading conditions.This work is helpful to understand the complete internal temperature layout and the location of the HST in distribution transformers.
基金supported by the researchgrant from Institute of Crustal Dynamics (No. ZDJ2007-3),China Earthquake Administration,and Beijing PiOptics Co., Ltd
文摘A high sensitive fiber Bragg grating (FBG) strain sensor with automatic temperature compensation is demonstrated. FBG is axially linked with a stick and their free ends are fixed to the measured object. When the measured strain changes, the stick does not change in length, but the FBG does. When the temperature changes, the stick changes in length to pull the FBG to realize temperature compensation. In experiments, 1.45 times strain sensitivity of bare FBG with temperature compensation of less than 0.1 nm Bragg wavelength drift over 100 ℃ shift is achieved.