期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Research on BIM Model Reshaping Method Based on 3D Point Cloud Recognition
1
作者 SHI Jin-yu YU Xian-feng +1 位作者 SI Zhan-jun ZHANG Ying-xue 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第4期125-135,共11页
In view of the limitations of traditional measurement methods in the field of building information,such as complex operation,low timeliness and poor accuracy,a new way of combining three-dimensional scanning technolog... In view of the limitations of traditional measurement methods in the field of building information,such as complex operation,low timeliness and poor accuracy,a new way of combining three-dimensional scanning technology and BIM(Building Information Modeling)model was discussed.Focused on the efficient acquisition of building geometric information using the fast-developing 3D point cloud technology,an improved deep learning-based 3D point cloud recognition method was proposed.The method optimised the network structure based on RandLA-Net to adapt to the large-scale point cloud processing requirements,while the semantic and instance features of the point cloud were integrated to significantly improve the recognition accuracy and provide a precise basis for BIM model remodeling.In addition,a visual BIM model generation system was developed,which systematically transformed the point cloud recognition results into BIM component parameters,automatically constructed BIM models,and promoted the open sharing and secondary development of models.The research results not only effectively promote the automation process of converting 3D point cloud data to refined BIM models,but also provide important technical support for promoting building informatisation and accelerating the construction of smart cities,showing a wide range of application potential and practical value. 展开更多
关键词 3D point cloud randla-Net network BIM model OSG engine
下载PDF
基于自投影注意力的城市道路点云智能识别
2
作者 杨莹 邹文明 +3 位作者 黄恺翔 王进 陈昱臻 金钊 《测绘科学》 CSCD 北大核心 2024年第3期67-76,共10页
针对大规模城市道路点云环境中,道路典型地物识别效率不高的问题,提出了一种基于自投影注意力的三维点云模型U-RandLA,通过点云投影算法获取道路点云信息自投影图,采用二维图像卷积网络分支U-Proj提取该自投影图特征,生成注意力分布图,... 针对大规模城市道路点云环境中,道路典型地物识别效率不高的问题,提出了一种基于自投影注意力的三维点云模型U-RandLA,通过点云投影算法获取道路点云信息自投影图,采用二维图像卷积网络分支U-Proj提取该自投影图特征,生成注意力分布图,强化模型对典型地物的识别能力,提升了现有点云识别算法的重点区域感知能力;融合点云原始信息和具有大感受野的注意力分布图的特征,扩增模型初始感受野,解决现有算法感受野狭窄问题,提升对大尺度典型地物的信息提取能力。实验结果表明,U-RandLA模型对典型地物的平均识别准确率达到97.7%,物体平均交并比达到64.4%。帮助提升了实际项目的生产效率,已成功应用于浙江省、上海市、山东省、重庆市等城市道路部件的智能提取。 展开更多
关键词 车载LiDAR点云 点云智能识别 randla网络 点云投影 注意力机制
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部