This research paper proposes a filter to remove Random Valued Impulse Noise (RVIN) based on Global Threshold Vector Outlyingness Ratio (GTVOR) that is applicable for real time image processing. This filter works with ...This research paper proposes a filter to remove Random Valued Impulse Noise (RVIN) based on Global Threshold Vector Outlyingness Ratio (GTVOR) that is applicable for real time image processing. This filter works with the algorithm that breaks the images into various decomposition levels using Discrete Wavelet Transform (DWT) and searches for the noisy pixels using the outlyingness of the pixel. This algorithm has the capability of differentiating high frequency pixels and the “noisy pixel” using the threshold as well as window adjustments. The damage and the loss of information are prevented by means of interior mining. This global threshold based algorithm uses different thresholds for different quadrants of DWT and thus helps in recovery of noisy image even if it is 90% affected. Experimental results exhibit that this method outperforms other existing methods for accurate noise detection and removal, at the same time chain of connectivity is not lost.展开更多
文摘This research paper proposes a filter to remove Random Valued Impulse Noise (RVIN) based on Global Threshold Vector Outlyingness Ratio (GTVOR) that is applicable for real time image processing. This filter works with the algorithm that breaks the images into various decomposition levels using Discrete Wavelet Transform (DWT) and searches for the noisy pixels using the outlyingness of the pixel. This algorithm has the capability of differentiating high frequency pixels and the “noisy pixel” using the threshold as well as window adjustments. The damage and the loss of information are prevented by means of interior mining. This global threshold based algorithm uses different thresholds for different quadrants of DWT and thus helps in recovery of noisy image even if it is 90% affected. Experimental results exhibit that this method outperforms other existing methods for accurate noise detection and removal, at the same time chain of connectivity is not lost.