AIM To evaluate the effects of glucagon-like peptide-1 analogs(GLP-1 a) combined with insulin on myocardial ischemiareperfusion injury in diabetic rats.METHODS Type 2 diabetes mellitus(T2 DM) was induced in maleWistar...AIM To evaluate the effects of glucagon-like peptide-1 analogs(GLP-1 a) combined with insulin on myocardial ischemiareperfusion injury in diabetic rats.METHODS Type 2 diabetes mellitus(T2 DM) was induced in maleWistar rats with streptozotocin(65 mg/kg) and verified using an oral glucose tolerance test. After anesthesia, the left coronary artery was occluded for 40 min followed by 80 min reperfusion. Blood glucose level was measured during surgery. Rats were randomized into six groups as follows:(1) control rats;(2) insulin(0.1 U/kg) treated rats prior to ischemia;(3) insulin(0.1 U/kg) treated rats at reperfusion;(4) GLP-1 a(140 mg/kg) treated rats prior to ischemia;(5) GLP-1 a(140 mg/kg) treated rats at reperfusion; and(6) rats treated with GLP-1 a(140 mg/kg) prior to ischemia plus insulin(0.1 U/kg) at reperfusion. Myocardial area at risk and infarct size was measured planimetrically using Evans blue and triphenyltetrazolium chloride staining, respectively.RESULTS There was no significant difference in the myocardial area at risk among groups. Insulin treatment before ischemia resulted in a significant increase in infarct size(34.7% ± 3.4% vs 18.6% ± 3.1% in the control rats, P < 0.05). Post-ischemic administration of insulin or GLP-1 a had no effect on infarct size. However, pre-ischemic administration of GLP-1 a reduced infarct size to 12% ± 2.2%(P < 0.05). The maximal infarct size reduction was observed in the group treated with GLP-1 a prior to ischemia and insulin at reperfusion(8% ± 1.6%, P < 0.05 vs the control and GLP-1 a alone treated groups).CONCLUSION GLP-1 a pre-administration results in myocardial infarct size reduction in rats with T2 DM. These effects are maximal in rats treated with GLP-1 a pre-ischemia plus insulin at reperfusion.展开更多
We report a 64-year-old female patient with an insulin allergy. She was treated with a combination of oral antihistamines, topical hydrocortisone cream, and moisturizing agents, which resulted in the improvement of ec...We report a 64-year-old female patient with an insulin allergy. She was treated with a combination of oral antihistamines, topical hydrocortisone cream, and moisturizing agents, which resulted in the improvement of eczema and intense pruritus. To evaluate insulin allergy, intradermal skin tests were performed with several insulin agents for clinical use and 0.9% NaCl. Skin testing with semisynthetic human insulin resulted in local, immediate skin reactions such as itchy erythema and wheals. Furthermore, we analyzed our case and 25 Japanese cases of insulin allergy previously reported in the literature as far as we know. Interestingly, the number of male patients was approximately two times higher than that of female, and the insulin-specific IgE antibody test was positive in 21 patients. We should keep the possibility of human insulin allergy in mind and prepare for it when initiating human insulin therapy.展开更多
In order to improve the life quality of diabetic patients,it is very important to develop rapid-acting insulin formulations that can mimic the physiological meal-time secretion profile of insulin in healthy people.Alt...In order to improve the life quality of diabetic patients,it is very important to develop rapid-acting insulin formulations that can mimic the physiological meal-time secretion profile of insulin in healthy people.Although several insulin analogues have been designed to provide postprandial glycemic control,still there are some serious disadvantages.A supramolecular strategy is presented here to inhibit insulin aggregation and improve its bioactivity by using Cp1-11 peptide.As a fragment of C-peptide in proinsulin,Cp1-11 peptide was found to influence insulin oligomerization by supramolecular interactions.This work demonstrates that the Cp1-11 peptide can interact with oligomeric insulin and facilitate its disaggregation into the physiologically active monomeric form.Computer simulation indicates that Cp1-11 can insert into the space between the C-terminal tail and the N-terminal helix of the B-chain of insulin,causing dissociation of the insulin dimer.The supramolecular assembly of Cp1-11 and insulin can improve the bioavailability and therapeutic effect of insulin on the control of in vivo blood glucose levels.These results suggest that Cp1-11 peptide can modulate the intermolecular interaction of aggregated insulin and prevent the transition from monomeric to multimeric states,and shows great potential for the development of an effective rapid-acting strategy to treat diabetes.展开更多
基金Supported by Russian Science Foundation,No.17-75-30052
文摘AIM To evaluate the effects of glucagon-like peptide-1 analogs(GLP-1 a) combined with insulin on myocardial ischemiareperfusion injury in diabetic rats.METHODS Type 2 diabetes mellitus(T2 DM) was induced in maleWistar rats with streptozotocin(65 mg/kg) and verified using an oral glucose tolerance test. After anesthesia, the left coronary artery was occluded for 40 min followed by 80 min reperfusion. Blood glucose level was measured during surgery. Rats were randomized into six groups as follows:(1) control rats;(2) insulin(0.1 U/kg) treated rats prior to ischemia;(3) insulin(0.1 U/kg) treated rats at reperfusion;(4) GLP-1 a(140 mg/kg) treated rats prior to ischemia;(5) GLP-1 a(140 mg/kg) treated rats at reperfusion; and(6) rats treated with GLP-1 a(140 mg/kg) prior to ischemia plus insulin(0.1 U/kg) at reperfusion. Myocardial area at risk and infarct size was measured planimetrically using Evans blue and triphenyltetrazolium chloride staining, respectively.RESULTS There was no significant difference in the myocardial area at risk among groups. Insulin treatment before ischemia resulted in a significant increase in infarct size(34.7% ± 3.4% vs 18.6% ± 3.1% in the control rats, P < 0.05). Post-ischemic administration of insulin or GLP-1 a had no effect on infarct size. However, pre-ischemic administration of GLP-1 a reduced infarct size to 12% ± 2.2%(P < 0.05). The maximal infarct size reduction was observed in the group treated with GLP-1 a prior to ischemia and insulin at reperfusion(8% ± 1.6%, P < 0.05 vs the control and GLP-1 a alone treated groups).CONCLUSION GLP-1 a pre-administration results in myocardial infarct size reduction in rats with T2 DM. These effects are maximal in rats treated with GLP-1 a pre-ischemia plus insulin at reperfusion.
文摘We report a 64-year-old female patient with an insulin allergy. She was treated with a combination of oral antihistamines, topical hydrocortisone cream, and moisturizing agents, which resulted in the improvement of eczema and intense pruritus. To evaluate insulin allergy, intradermal skin tests were performed with several insulin agents for clinical use and 0.9% NaCl. Skin testing with semisynthetic human insulin resulted in local, immediate skin reactions such as itchy erythema and wheals. Furthermore, we analyzed our case and 25 Japanese cases of insulin allergy previously reported in the literature as far as we know. Interestingly, the number of male patients was approximately two times higher than that of female, and the insulin-specific IgE antibody test was positive in 21 patients. We should keep the possibility of human insulin allergy in mind and prepare for it when initiating human insulin therapy.
基金supported by National Natural Science Foundation of China (21534008,51322303 and 21174088)Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R48)State Key Laboratory of Polymer Materials Engineering (Grant No.sklpme2017-2-02).
文摘In order to improve the life quality of diabetic patients,it is very important to develop rapid-acting insulin formulations that can mimic the physiological meal-time secretion profile of insulin in healthy people.Although several insulin analogues have been designed to provide postprandial glycemic control,still there are some serious disadvantages.A supramolecular strategy is presented here to inhibit insulin aggregation and improve its bioactivity by using Cp1-11 peptide.As a fragment of C-peptide in proinsulin,Cp1-11 peptide was found to influence insulin oligomerization by supramolecular interactions.This work demonstrates that the Cp1-11 peptide can interact with oligomeric insulin and facilitate its disaggregation into the physiologically active monomeric form.Computer simulation indicates that Cp1-11 can insert into the space between the C-terminal tail and the N-terminal helix of the B-chain of insulin,causing dissociation of the insulin dimer.The supramolecular assembly of Cp1-11 and insulin can improve the bioavailability and therapeutic effect of insulin on the control of in vivo blood glucose levels.These results suggest that Cp1-11 peptide can modulate the intermolecular interaction of aggregated insulin and prevent the transition from monomeric to multimeric states,and shows great potential for the development of an effective rapid-acting strategy to treat diabetes.