This paper is concerned with the global well-posedness of the solution to the compressible Navier-Stokes/Allen-Cahn system and its sharp interface limit in one-dimensional space.For the perturbations with small energy...This paper is concerned with the global well-posedness of the solution to the compressible Navier-Stokes/Allen-Cahn system and its sharp interface limit in one-dimensional space.For the perturbations with small energy but possibly large oscillations of rarefaction wave solutions near phase separation,and where the strength of the initial phase field could be arbitrarily large,we prove that the solution of the Cauchy problem exists for all time,and converges to the centered rarefaction wave solution of the corresponding standard two-phase Euler equation as the viscosity and the thickness of the interface tend to zero.The proof is mainly based on a scaling argument and a basic energy method.展开更多
In this paper,we study the time-asymptotically nonlinear stability of rarefaction waves for the Cauchy problem of the compressible Navier-Stokes equations for a reacting mixture with zero heat conductivity in one dime...In this paper,we study the time-asymptotically nonlinear stability of rarefaction waves for the Cauchy problem of the compressible Navier-Stokes equations for a reacting mixture with zero heat conductivity in one dimension.If the corresponding Riemann problem for the compressible Euler system admits the solutions consisting of rarefaction waves only,it is shown that its Cauchy problem has a unique global solution which tends time-asymptotically towards the rarefaction waves,while the initial perturbation and the strength of rarefaction waves are suitably small.展开更多
This paper is concerned with the stability of the rarefaction wave for the generalized KdV-Burgers equation [GRAPHICS] Roughly speaking, under the assumption that u(-) < u(+), the solution u(x, t) to Cauchy problem...This paper is concerned with the stability of the rarefaction wave for the generalized KdV-Burgers equation [GRAPHICS] Roughly speaking, under the assumption that u(-) < u(+), the solution u(x, t) to Cauchy problem (1) satisfying (sup)(x&ISIN;R)\u(x, t) - u(R)(x/t)\ --> 0 as t --> infinity, where u(R)(x/t) is the rarefaction wave of the non-viscous Burgers equation u(t) + f(u)(x) = 0 with Riemann initial data [GRAPHICS]展开更多
This paper is concerned with the stability of the rarefaction wave for the Burgers equationwhere 0 ≤ a < 1/4p (q is determined by (2.2)). Roughly speaking, under the assumption that u_ < u+, the authors prove t...This paper is concerned with the stability of the rarefaction wave for the Burgers equationwhere 0 ≤ a < 1/4p (q is determined by (2.2)). Roughly speaking, under the assumption that u_ < u+, the authors prove the existence of the global smooth solution to the Cauchy problem (I), also find the solution u(x, t) to the Cauchy problem (I) satisfying sup |u(x, t) -uR(x/t)| → 0 as t → ∞, where uR(x/t) is the rarefaction wave of the non-viscous Burgersequation ut + f(u)x = 0 with Riemann initial data u(x, 0) =展开更多
Shock wave is emitted into the plate and sphere when a sphere hypervelocity impacts onto a thin plate.The fragmentation and phase change of the material caused by the propagation and unloading of shock wave could resu...Shock wave is emitted into the plate and sphere when a sphere hypervelocity impacts onto a thin plate.The fragmentation and phase change of the material caused by the propagation and unloading of shock wave could result in the formation of debris cloud eventually.Propagation models are deduced based on one-dimensional shock wave theory and the geometry of sphere,which uses elliptic equations(corresponding to ellipsoid equations in physical space)to describe the propagation of shock wave and the rarefaction wave.The“Effective thickness”is defined as the critical plate thickness that ensures the rarefaction wave overtake the shock wave at the back of the sphere.The“Effective thickness”is directly related to the form of the debris cloud.The relation of the“Effective thickness”and the“Optimum thickness”is also discussed.The impacts of Al spheres onto Al plates are simulated within SPH to verify the propagation models and associated theories.The results show that the wave fronts predicted by the propagation models are closer to the simulation result at higher impact velocity.The curvatures of the wave fronts decrease with the increase of impact velocities.The predicted“Effective thickness”is consistent with the simulation results.The analysis about the shock wave propagation and unloading in this paper can provide a new sight and inspiration for the quantitative study of hypervelocity impact and space debris protection.展开更多
In this article, authors study the Cauch problem for a model of hyperbolic-elliptic coupled system derived from the one-dimensional system of the rudiating gas. By considering the initial data as a small disturbances ...In this article, authors study the Cauch problem for a model of hyperbolic-elliptic coupled system derived from the one-dimensional system of the rudiating gas. By considering the initial data as a small disturbances of rarefaction wave of inviscid Burgers equation, the global existence of the solution to the corresponding Cauchy problem and asymptotic stability of rarefaction wave is proved. The analysis is based on a priori estimates and L^2-energy method.展开更多
In this paper,homogeneous condensation induced by unsteady rarefaction waves and reflected rarefaction waves in vapor-gas mixture was investigated experimentally.It is shown that the temperature of condensation onset ...In this paper,homogeneous condensation induced by unsteady rarefaction waves and reflected rarefaction waves in vapor-gas mixture was investigated experimentally.It is shown that the temperature of condensation onset during very fast unsteady expansion in vapor-gas mixture is much lower than that during equilibrium process in the atmosphere. It is of interest to indicate that the size of droplets approximates a constant,but the number density and the mass density of droplets change rapidly in the region of static flow.展开更多
We study the long time formation of rarefaction waves appearing in balance laws by means of singular perturbation methods. The balance laws are non standard because they contain a variable u that appears only in the f...We study the long time formation of rarefaction waves appearing in balance laws by means of singular perturbation methods. The balance laws are non standard because they contain a variable u that appears only in the flux terms. We present a concrete example occurring in flow of steam, nitrogen and water in porous media and an abstract example for a class of systems of three equations. In the concrete example the zero-order equations resulting from the expansion yield a type of conservation law system called compositional model in Petroleum Engineering. In this work we show how compositional models originate from physically more fundamental systems of balance laws. Under appropriate conditions, we prove that certain solutions of the system of balance laws decay with time to rarefaction wave solutions in the compositional model originating from the system of balance laws.展开更多
We investigate the decay rates of the planar viscous rarefaction wave of the initial-boundary value problem to scalar conservation law with degenerate viscosity in several dimensions on the half-line space, where the ...We investigate the decay rates of the planar viscous rarefaction wave of the initial-boundary value problem to scalar conservation law with degenerate viscosity in several dimensions on the half-line space, where the corresponding one-dimensional problem admits the rarefaction wave as an asymptotic state. The analysis is based on the standard L2-energy method and L1-estimate.展开更多
This paper is devoted to studying the zero dissipation limit problem for the one-dimensional compressible Navier-Stokes equations with selected density-dependent viscosity.In particular,we focus our attention on the v...This paper is devoted to studying the zero dissipation limit problem for the one-dimensional compressible Navier-Stokes equations with selected density-dependent viscosity.In particular,we focus our attention on the viscosity taking the formμ(ρ)=ρ^(ϵ)(ϵ>0).For the selected density-dependent viscosity,it is proved that the solutions of the one-dimensional compressible Navier-Stokes equations with centered rarefaction wave initial data exist for all time,and converge to the centered rarefaction waves as the viscosity vanishes,uniformly away from the initial discontinuities.New and subtle analysis is developed to overcome difficulties due to the selected density-dependent viscosity to derive energy estimates,in addition to the scaling argument and elementary energy analysis.Moreover,our results extend the studies in[Xin Z P.Comm Pure Appl Math,1993,46(5):621-665].展开更多
This article is devoted to studying the initial-boundary value problem for an ideal polytropic model of non-viscous and compressible gas.We focus our attention on the outflow problem when the flow velocity on the boun...This article is devoted to studying the initial-boundary value problem for an ideal polytropic model of non-viscous and compressible gas.We focus our attention on the outflow problem when the flow velocity on the boundary is negative and give a rigorous proof of the asymptotic stability of both the degenerate boundary layer and its superposition with the 3-rarefaction wave under some smallness conditions.New weighted energy estimates are introduced,and the trace of the density and velocity on the boundary are handled by some subtle analysis.The decay properties of the boundary layer and the smooth rarefaction wave also play an important role.展开更多
In 2018,Duan[1]studied the case of zero heat conductivity for a one-dimensional compressible micropolar fluid model.Due to the absence of heat conductivity,it is quite difficult to close the energy estimates.He consid...In 2018,Duan[1]studied the case of zero heat conductivity for a one-dimensional compressible micropolar fluid model.Due to the absence of heat conductivity,it is quite difficult to close the energy estimates.He considered the far-field states of the initial data to be constants;that is,lim x→±∞(v0,u0,w0,θ0)(x)=(1,0,0,1).He proved that the solution tends asymptotically to those constants.In this article,under the same hypothesis that the heat conductivity is zero,we consider the far-field states of the initial data to be different constants-that is,lim x→±∞(v0,u0,w0,θ0)(x)=(v±,u±,o,θ±)-and we prove that if both the initial perturbation and the strength of the rarefaction waves are assumed to be suitably small,the Cauchy problem admits a unique global solution that tends time-asymptotically toward the combination of two rarefaction waves from different families.展开更多
In this article, we are concerned with the nonlinear stability of the rarefaction wave for a one-dimensional macroscopic model derived from the Vlasov-Maxwell-Boltzmann system. The result shows that the large-time beh...In this article, we are concerned with the nonlinear stability of the rarefaction wave for a one-dimensional macroscopic model derived from the Vlasov-Maxwell-Boltzmann system. The result shows that the large-time behavior of the solutions coincides with the one for both the Navier-Stokes-Poisson system and the Navier-Stokes system. Both the timedecay property of the rarefaction wave profile and the influence of the electromagnetic field play a key role in the analysis.展开更多
The dynamics characteristics of rarefaction wave gun( RAVEN) in launching are studied. Based on its characteristics of structure and interior ballistics, the launch dynamic model and virtual prototype of RAVEN are est...The dynamics characteristics of rarefaction wave gun( RAVEN) in launching are studied. Based on its characteristics of structure and interior ballistics, the launch dynamic model and virtual prototype of RAVEN are established. After simulating and solving by ADAMS software, through comparison RAVEN to conventional gun,influences of some structural parameters on firing stability are acquired. Optimization analysis of structural parameters of gun based on analysis of the firing stability is done. It puts forward the theoretic basis for improving firing stability and security.展开更多
Abstract The inflow problem in the supersonic case for a one-dimensional compressible viscous gas on the half line (0,+X) is investigated. A stability theorem concerning the long time behavior of rarefaction wave is e...Abstract The inflow problem in the supersonic case for a one-dimensional compressible viscous gas on the half line (0,+X) is investigated. A stability theorem concerning the long time behavior of rarefaction wave is established.展开更多
The zero dissipation limit for the one-dimensional Navier-Stokes equations of compressible,isentropic gases in the case that the corresponding Euler equations have rarefaction wave solutions is investigated in this pa...The zero dissipation limit for the one-dimensional Navier-Stokes equations of compressible,isentropic gases in the case that the corresponding Euler equations have rarefaction wave solutions is investigated in this paper.In a paper(Comm.Pure Appl.Math.,46,1993,621-665) by Z.P.Xin,the author constructed a sequence of solutions to one-dimensional Navier-Stokes isentropic equations converging to the rarefaction wave as the viscosity tends to zero.Furthermore,he obtained that the convergence rate is ε 1/4 | ln ε|.In this paper,Xin's convergence rate is improved to ε1/3|lnε|2 by different scaling arguments.The new scaling has various applications in related problems.展开更多
We consider the asymptotic behavior of solutions to a model of hyperbolicelliptic coupled system on the half-line R+ = (0, ∞),with the Dirichlet boundary condition u(0, t) = 0. S. Kawashima and Y. Tanaka [Kyushu...We consider the asymptotic behavior of solutions to a model of hyperbolicelliptic coupled system on the half-line R+ = (0, ∞),with the Dirichlet boundary condition u(0, t) = 0. S. Kawashima and Y. Tanaka [Kyushu J. Math., 58(2004), 211-250] have shown that the solution to the corresponding Cauchy problem behaviors like rarefaction waves and obtained its convergence rate when u_ u+. Our main concern in this paper is the boundary effect. In the case of null-Dirichlet boundary condition on u, asymptotic behavior of the solution (u, q) is proved to be rarefaction wave as t tends to infinity. Its convergence rate is also obtained by the standard L2-energy method and Ll-estimate. It decays much lower than that of the corresponding Cauchy problem.展开更多
We study the large-time asymptotics of solutions toward the weak rarefaction wave of the quasineutral Euler system for a two-fluid plasma model in the presence of diffusions of velocity and temperature under small per...We study the large-time asymptotics of solutions toward the weak rarefaction wave of the quasineutral Euler system for a two-fluid plasma model in the presence of diffusions of velocity and temperature under small perturbations of initial data and also under an extra assumption θ_i,+/θ_e,+=θ_i,-/θ_e,-≥m_i/2m_e,namely, the ratio of the thermal speeds of ions and electrons at both far fields is not less than one half. Meanwhile,we obtain the global existence of solutions based on energy method.展开更多
In this paper, a sequence of solutions to the one-dimensional motion of a radiating gas are con- structed. Furthermore, when the absorption coefficient a tends to oo, the above solutions converge to the rarefaction wa...In this paper, a sequence of solutions to the one-dimensional motion of a radiating gas are con- structed. Furthermore, when the absorption coefficient a tends to oo, the above solutions converge to the rarefaction wave, which is an elementary wave pattern of gas dynamics, with a convergence rate α -1/3|lnα|2.展开更多
We study the zero-dissipation problem for a one-dimensional model system for the isentropic flow of a compressible viscous gas, the so-called p-system with viscosity. When the solution of the inviscid problem is a rar...We study the zero-dissipation problem for a one-dimensional model system for the isentropic flow of a compressible viscous gas, the so-called p-system with viscosity. When the solution of the inviscid problem is a rarefaction wave with finite strength, there exists unique solution to the viscous problem with the same initial data which converges to the given inviscid solution as c goes to zero. The proof consists of a scaling argument and elementary energy analysis, based on the underlying wave structure.展开更多
基金supported by the National Natural Science Foundation of China(12361044)supported by the National Natural Science Foundation of China(12171024,11971217,11971020)supported by the Academic and Technical Leaders Training Plan of Jiangxi Province(20212BCJ23027)。
文摘This paper is concerned with the global well-posedness of the solution to the compressible Navier-Stokes/Allen-Cahn system and its sharp interface limit in one-dimensional space.For the perturbations with small energy but possibly large oscillations of rarefaction wave solutions near phase separation,and where the strength of the initial phase field could be arbitrarily large,we prove that the solution of the Cauchy problem exists for all time,and converges to the centered rarefaction wave solution of the corresponding standard two-phase Euler equation as the viscosity and the thickness of the interface tend to zero.The proof is mainly based on a scaling argument and a basic energy method.
基金supported by the Beijing Natural Science Foundation(1182004,Z180007,1192001).
文摘In this paper,we study the time-asymptotically nonlinear stability of rarefaction waves for the Cauchy problem of the compressible Navier-Stokes equations for a reacting mixture with zero heat conductivity in one dimension.If the corresponding Riemann problem for the compressible Euler system admits the solutions consisting of rarefaction waves only,it is shown that its Cauchy problem has a unique global solution which tends time-asymptotically towards the rarefaction waves,while the initial perturbation and the strength of rarefaction waves are suitably small.
文摘This paper is concerned with the stability of the rarefaction wave for the generalized KdV-Burgers equation [GRAPHICS] Roughly speaking, under the assumption that u(-) < u(+), the solution u(x, t) to Cauchy problem (1) satisfying (sup)(x&ISIN;R)\u(x, t) - u(R)(x/t)\ --> 0 as t --> infinity, where u(R)(x/t) is the rarefaction wave of the non-viscous Burgers equation u(t) + f(u)(x) = 0 with Riemann initial data [GRAPHICS]
文摘This paper is concerned with the stability of the rarefaction wave for the Burgers equationwhere 0 ≤ a < 1/4p (q is determined by (2.2)). Roughly speaking, under the assumption that u_ < u+, the authors prove the existence of the global smooth solution to the Cauchy problem (I), also find the solution u(x, t) to the Cauchy problem (I) satisfying sup |u(x, t) -uR(x/t)| → 0 as t → ∞, where uR(x/t) is the rarefaction wave of the non-viscous Burgersequation ut + f(u)x = 0 with Riemann initial data u(x, 0) =
基金supported by the National Natural Science Foundation of China(11627901,11872118).
文摘Shock wave is emitted into the plate and sphere when a sphere hypervelocity impacts onto a thin plate.The fragmentation and phase change of the material caused by the propagation and unloading of shock wave could result in the formation of debris cloud eventually.Propagation models are deduced based on one-dimensional shock wave theory and the geometry of sphere,which uses elliptic equations(corresponding to ellipsoid equations in physical space)to describe the propagation of shock wave and the rarefaction wave.The“Effective thickness”is defined as the critical plate thickness that ensures the rarefaction wave overtake the shock wave at the back of the sphere.The“Effective thickness”is directly related to the form of the debris cloud.The relation of the“Effective thickness”and the“Optimum thickness”is also discussed.The impacts of Al spheres onto Al plates are simulated within SPH to verify the propagation models and associated theories.The results show that the wave fronts predicted by the propagation models are closer to the simulation result at higher impact velocity.The curvatures of the wave fronts decrease with the increase of impact velocities.The predicted“Effective thickness”is consistent with the simulation results.The analysis about the shock wave propagation and unloading in this paper can provide a new sight and inspiration for the quantitative study of hypervelocity impact and space debris protection.
基金The research was supported by three grants from the Key Project of the Natural Science Foundation of China (10431060)the Key Project of Chinese Ministry of Education (104128)the South-Central University For Nationalities Natural Science Foundation of China (YZY05008)
文摘In this article, authors study the Cauch problem for a model of hyperbolic-elliptic coupled system derived from the one-dimensional system of the rudiating gas. By considering the initial data as a small disturbances of rarefaction wave of inviscid Burgers equation, the global existence of the solution to the corresponding Cauchy problem and asymptotic stability of rarefaction wave is proved. The analysis is based on a priori estimates and L^2-energy method.
文摘In this paper,homogeneous condensation induced by unsteady rarefaction waves and reflected rarefaction waves in vapor-gas mixture was investigated experimentally.It is shown that the temperature of condensation onset during very fast unsteady expansion in vapor-gas mixture is much lower than that during equilibrium process in the atmosphere. It is of interest to indicate that the size of droplets approximates a constant,but the number density and the mass density of droplets change rapidly in the region of static flow.
基金supported in part by: CNPq under grant 141573/2002-3,ANP/PRH-32CNPq under Grant 301532/2003-6+2 种基金FAPERJ under Grant E-26/152.163/2002FINEP underCTPETRO Grant 21.01.0248.00PETROBRAS under CTPETRO Grant 650.4.039.01.0, Brazil
文摘We study the long time formation of rarefaction waves appearing in balance laws by means of singular perturbation methods. The balance laws are non standard because they contain a variable u that appears only in the flux terms. We present a concrete example occurring in flow of steam, nitrogen and water in porous media and an abstract example for a class of systems of three equations. In the concrete example the zero-order equations resulting from the expansion yield a type of conservation law system called compositional model in Petroleum Engineering. In this work we show how compositional models originate from physically more fundamental systems of balance laws. Under appropriate conditions, we prove that certain solutions of the system of balance laws decay with time to rarefaction wave solutions in the compositional model originating from the system of balance laws.
基金supported by the NSF of China (10625105,10431060)the Program for New Centary Excellent Talents in University (NCEF-04-0745)
文摘We investigate the decay rates of the planar viscous rarefaction wave of the initial-boundary value problem to scalar conservation law with degenerate viscosity in several dimensions on the half-line space, where the corresponding one-dimensional problem admits the rarefaction wave as an asymptotic state. The analysis is based on the standard L2-energy method and L1-estimate.
基金supported by the National Natural Science Foundation of China(11671319,11931013).
文摘This paper is devoted to studying the zero dissipation limit problem for the one-dimensional compressible Navier-Stokes equations with selected density-dependent viscosity.In particular,we focus our attention on the viscosity taking the formμ(ρ)=ρ^(ϵ)(ϵ>0).For the selected density-dependent viscosity,it is proved that the solutions of the one-dimensional compressible Navier-Stokes equations with centered rarefaction wave initial data exist for all time,and converge to the centered rarefaction waves as the viscosity vanishes,uniformly away from the initial discontinuities.New and subtle analysis is developed to overcome difficulties due to the selected density-dependent viscosity to derive energy estimates,in addition to the scaling argument and elementary energy analysis.Moreover,our results extend the studies in[Xin Z P.Comm Pure Appl Math,1993,46(5):621-665].
基金the Fundamental Research grants from the Science Foundation of Hubei Province(2018CFB693)the Natural Science Foundation of China(11871388)the Natural Science Foundation of China(11701439).
文摘This article is devoted to studying the initial-boundary value problem for an ideal polytropic model of non-viscous and compressible gas.We focus our attention on the outflow problem when the flow velocity on the boundary is negative and give a rigorous proof of the asymptotic stability of both the degenerate boundary layer and its superposition with the 3-rarefaction wave under some smallness conditions.New weighted energy estimates are introduced,and the trace of the density and velocity on the boundary are handled by some subtle analysis.The decay properties of the boundary layer and the smooth rarefaction wave also play an important role.
基金supported by Hubei Natural Science(2019CFB834).The second author was supported by the NSFC(11971193).
文摘In 2018,Duan[1]studied the case of zero heat conductivity for a one-dimensional compressible micropolar fluid model.Due to the absence of heat conductivity,it is quite difficult to close the energy estimates.He considered the far-field states of the initial data to be constants;that is,lim x→±∞(v0,u0,w0,θ0)(x)=(1,0,0,1).He proved that the solution tends asymptotically to those constants.In this article,under the same hypothesis that the heat conductivity is zero,we consider the far-field states of the initial data to be different constants-that is,lim x→±∞(v0,u0,w0,θ0)(x)=(v±,u±,o,θ±)-and we prove that if both the initial perturbation and the strength of the rarefaction waves are assumed to be suitably small,the Cauchy problem admits a unique global solution that tends time-asymptotically toward the combination of two rarefaction waves from different families.
基金supported by the National Natural Science Foundation of China(11271160)
文摘In this article, we are concerned with the nonlinear stability of the rarefaction wave for a one-dimensional macroscopic model derived from the Vlasov-Maxwell-Boltzmann system. The result shows that the large-time behavior of the solutions coincides with the one for both the Navier-Stokes-Poisson system and the Navier-Stokes system. Both the timedecay property of the rarefaction wave profile and the influence of the electromagnetic field play a key role in the analysis.
文摘The dynamics characteristics of rarefaction wave gun( RAVEN) in launching are studied. Based on its characteristics of structure and interior ballistics, the launch dynamic model and virtual prototype of RAVEN are established. After simulating and solving by ADAMS software, through comparison RAVEN to conventional gun,influences of some structural parameters on firing stability are acquired. Optimization analysis of structural parameters of gun based on analysis of the firing stability is done. It puts forward the theoretic basis for improving firing stability and security.
文摘Abstract The inflow problem in the supersonic case for a one-dimensional compressible viscous gas on the half line (0,+X) is investigated. A stability theorem concerning the long time behavior of rarefaction wave is established.
基金supported by the National Natural Science Foundation of China for Outstanding Young Scholars(No. 10825102)the National Basic Research Program of China (973 Program) (No. 2011CB808002)
文摘The zero dissipation limit for the one-dimensional Navier-Stokes equations of compressible,isentropic gases in the case that the corresponding Euler equations have rarefaction wave solutions is investigated in this paper.In a paper(Comm.Pure Appl.Math.,46,1993,621-665) by Z.P.Xin,the author constructed a sequence of solutions to one-dimensional Navier-Stokes isentropic equations converging to the rarefaction wave as the viscosity tends to zero.Furthermore,he obtained that the convergence rate is ε 1/4 | ln ε|.In this paper,Xin's convergence rate is improved to ε1/3|lnε|2 by different scaling arguments.The new scaling has various applications in related problems.
基金The research was supported by the National Natural Science Foundation of China #10625105 and #10431060, the Program for New Century Excellent Talents in University #NCET-04-0745. Acknowledgement Authors would like to thank the anonymous referee for his/her helpful suggestions and comments.
文摘We consider the asymptotic behavior of solutions to a model of hyperbolicelliptic coupled system on the half-line R+ = (0, ∞),with the Dirichlet boundary condition u(0, t) = 0. S. Kawashima and Y. Tanaka [Kyushu J. Math., 58(2004), 211-250] have shown that the solution to the corresponding Cauchy problem behaviors like rarefaction waves and obtained its convergence rate when u_ u+. Our main concern in this paper is the boundary effect. In the case of null-Dirichlet boundary condition on u, asymptotic behavior of the solution (u, q) is proved to be rarefaction wave as t tends to infinity. Its convergence rate is also obtained by the standard L2-energy method and Ll-estimate. It decays much lower than that of the corresponding Cauchy problem.
基金supported by the General Research Fund from Research Grants Council of Hong Kong(Grant No.400912)National Natural Science Foundation of China(Grant Nos.11101188+1 种基金11471142and 11331005)the Program for Changjiang Scholars and Innovative Research Team in University(Grant No.IRT13066)
文摘We study the large-time asymptotics of solutions toward the weak rarefaction wave of the quasineutral Euler system for a two-fluid plasma model in the presence of diffusions of velocity and temperature under small perturbations of initial data and also under an extra assumption θ_i,+/θ_e,+=θ_i,-/θ_e,-≥m_i/2m_e,namely, the ratio of the thermal speeds of ions and electrons at both far fields is not less than one half. Meanwhile,we obtain the global existence of solutions based on energy method.
基金Supported in part by NSFC Grant No.10825102 for Outstanding Young scholarsNational Basic Research Program of China(973 Program),No.2011CB808002Youth foundation of Chinese NSF 11301344
文摘In this paper, a sequence of solutions to the one-dimensional motion of a radiating gas are con- structed. Furthermore, when the absorption coefficient a tends to oo, the above solutions converge to the rarefaction wave, which is an elementary wave pattern of gas dynamics, with a convergence rate α -1/3|lnα|2.
文摘We study the zero-dissipation problem for a one-dimensional model system for the isentropic flow of a compressible viscous gas, the so-called p-system with viscosity. When the solution of the inviscid problem is a rarefaction wave with finite strength, there exists unique solution to the viscous problem with the same initial data which converges to the given inviscid solution as c goes to zero. The proof consists of a scaling argument and elementary energy analysis, based on the underlying wave structure.