This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends t...This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends that they are not the same. The concept of cyber security is explored, which goes beyond protecting information resources to include a wider variety of assets, including people [1]. Protecting information assets is the main goal of traditional information security, with consideration to the human element and how people fit into the security process. On the other hand, cyber security adds a new level of complexity, as people might unintentionally contribute to or become targets of cyberattacks. This aspect presents moral questions since it is becoming more widely accepted that society has a duty to protect weaker members of society, including children [1]. The study emphasizes how important cyber security is on a larger scale, with many countries creating plans and laws to counteract cyberattacks. Nevertheless, a lot of these sources frequently neglect to define the differences or the relationship between information security and cyber security [1]. The paper focus on differentiating between cybersecurity and information security on a larger scale. The study also highlights other areas of cybersecurity which includes defending people, social norms, and vital infrastructure from threats that arise from online in addition to information and technology protection. It contends that ethical issues and the human factor are becoming more and more important in protecting assets in the digital age, and that cyber security is a paradigm shift in this regard [1].展开更多
Real-time system timing analysis is crucial for estimating the worst-case execution time(WCET)of a program.To achieve this,static or dynamic analysis methods are used,along with targeted modeling of the actual hardwar...Real-time system timing analysis is crucial for estimating the worst-case execution time(WCET)of a program.To achieve this,static or dynamic analysis methods are used,along with targeted modeling of the actual hardware system.This literature review focuses on calculating WCET for multi-core processors,providing a survey of traditional methods used for static and dynamic analysis and highlighting the major challenges that arise from different program execution scenarios on multi-core platforms.This paper outlines the strengths and weaknesses of current methodologies and offers insights into prospective areas of research on multi-core analysis.By presenting a comprehensive analysis of the current state of research on multi-core processor analysis for WCET estimation,this review aims to serve as a valuable resource for researchers and practitioners in the field.展开更多
This paper designs a space electromagnetic interference signal test and analysis technology verification platform.The article firstly introduces the general scheme of the technical verification platform and then descr...This paper designs a space electromagnetic interference signal test and analysis technology verification platform.The article firstly introduces the general scheme of the technical verification platform and then describes each component unit of the hardware and the overall structure of the software in detail.The platform can achieve a 10 MHz~50 GHz working frequency band,1.2 GHz acquisition and real-time recording bandwidth,6 GB/s recording rate,and 12 TB recording capacity.展开更多
Based on the fact that on-line chat has become the most developing language form in the information age, this article point out the stylistic features of on-line English chat. Though in written language form, such lan...Based on the fact that on-line chat has become the most developing language form in the information age, this article point out the stylistic features of on-line English chat. Though in written language form, such language is spoken language in nature, thus it is worthwhile to analyze this special phaenomenon in lexical and grammatical level.展开更多
The application and development of a wide-area measurement system(WAMS)has enabled many applications and led to several requirements based on dynamic measurement data.Such data are transmitted as big data information ...The application and development of a wide-area measurement system(WAMS)has enabled many applications and led to several requirements based on dynamic measurement data.Such data are transmitted as big data information flow.To ensure effective transmission of wide-frequency electrical information by the communication protocol of a WAMS,this study performs real-time traffic monitoring and analysis of the data network of a power information system,and establishes corresponding network optimization strategies to solve existing transmission problems.This study utilizes the traffic analysis results obtained using the current real-time dynamic monitoring system to design an optimization strategy,covering the optimization in three progressive levels:the underlying communication protocol,source data,and transmission process.Optimization of the system structure and scheduling optimization of data information are validated to be feasible and practical via tests.展开更多
A new path planning method for mobile robots in globally unknown environment with moving obstacles is pre- sented. With an autoregressive (AR) model to predict the future positions of moving obstacles, and the predict...A new path planning method for mobile robots in globally unknown environment with moving obstacles is pre- sented. With an autoregressive (AR) model to predict the future positions of moving obstacles, and the predicted position taken as the next position of moving obstacles, a motion path in dynamic uncertain environment is planned by means of an on-line real-time path planning technique based on polar coordinates in which the desirable direction angle is taken into consideration as an optimization index. The effectiveness, feasibility, high stability, perfect performance of obstacle avoidance, real-time and optimization capability are demonstrated by simulation examples.展开更多
In order to optimize the embedded system implementation for Ethernet-based computer numerical control (CNC) system, it is very necessary to establish the performance analysis model and further adopt the codesign met...In order to optimize the embedded system implementation for Ethernet-based computer numerical control (CNC) system, it is very necessary to establish the performance analysis model and further adopt the codesign method from the control, communication and computing perspectives. On the basis of analyzing real-time Ethemet, system architecture, time characteristic parameters of control-loop ere, a performance analysis model for real-time Ethemet-based CNC system was proposed, which is able to include the timing effects caused by the implementation platform in the simulation. The key for establishing the model is accomplished by designing the error analysis module and the controller nodes. Under the restraint of CPU resource and communication bandwidth, the experiment with a case study was conducted, and the results show that if the deadline miss ratio of data packets is 0.2%, then the percentage error is 1.105%. The proposed model can be used at several stages of CNC system development.展开更多
As multimedia data sharing increases,data security in mobile devices and its mechanism can be seen as critical.Biometrics combines the physiological and behavioral qualities of an individual to validate their characte...As multimedia data sharing increases,data security in mobile devices and its mechanism can be seen as critical.Biometrics combines the physiological and behavioral qualities of an individual to validate their character in real-time.Humans incorporate physiological attributes like a fingerprint,face,iris,palm print,finger knuckle print,Deoxyribonucleic Acid(DNA),and behavioral qualities like walk,voice,mark,or keystroke.The main goal of this paper is to design a robust framework for automatic face recognition.Scale Invariant Feature Transform(SIFT)and Speeded-up Robust Features(SURF)are employed for face recognition.Also,we propose a modified Gabor Wavelet Transform for SIFT/SURF(GWT-SIFT/GWT-SURF)to increase the recognition accuracy of human faces.The proposed scheme is composed of three steps.First,the entropy of the image is removed using Discrete Wavelet Transform(DWT).Second,the computational complexity of the SIFT/SURF is reduced.Third,the accuracy is increased for authentication by the proposed GWT-SIFT/GWT-SURF algorithm.A comparative analysis of the proposed scheme is done on real-time Olivetti Research Laboratory(ORL)and Poznan University of Technology(PUT)databases.When compared to the traditional SIFT/SURF methods,we verify that the GWT-SIFT achieves the better accuracy of 99.32%and the better approach is the GWT-SURF as the run time of the GWT-SURF for 100 images is 3.4 seconds when compared to the GWT-SIFT which has a run time of 4.9 seconds for 100 images.展开更多
In this paper, a mathematical model of real-time simulation is given, and the problem of convergence on real-time Runge-Kutta algorithms is analysed. At last a theorem on the relation between the order of compensation...In this paper, a mathematical model of real-time simulation is given, and the problem of convergence on real-time Runge-Kutta algorithms is analysed. At last a theorem on the relation between the order of compensation and the convergent order of real-time algorithm is proved.展开更多
Opinion (sentiment) analysis on big data streams from the constantly generated text streams on social media networks to hundreds of millions of online consumer reviews provides many organizations in every field with o...Opinion (sentiment) analysis on big data streams from the constantly generated text streams on social media networks to hundreds of millions of online consumer reviews provides many organizations in every field with opportunities to discover valuable intelligence from the massive user generated text streams. However, the traditional content analysis frameworks are inefficient to handle the unprecedentedly big volume of unstructured text streams and the complexity of text analysis tasks for the real time opinion analysis on the big data streams. In this paper, we propose a parallel real time sentiment analysis system: Social Media Data Stream Sentiment Analysis Service (SMDSSAS) that performs multiple phases of sentiment analysis of social media text streams effectively in real time with two fully analytic opinion mining models to combat the scale of text data streams and the complexity of sentiment analysis processing on unstructured text streams. We propose two aspect based opinion mining models: Deterministic and Probabilistic sentiment models for a real time sentiment analysis on the user given topic related data streams. Experiments on the social media Twitter stream traffic captured during the pre-election weeks of the 2016 Presidential election for real-time analysis of public opinions toward two presidential candidates showed that the proposed system was able to predict correctly Donald Trump as the winner of the 2016 Presidential election. The cross validation results showed that the proposed sentiment models with the real-time streaming components in our proposed framework delivered effectively the analysis of the opinions on two presidential candidates with average 81% accuracy for the Deterministic model and 80% for the Probabilistic model, which are 1% - 22% improvements from the results of the existing literature.展开更多
A technology for unintended lane departure warning was proposed. As crucial information, lane boundaries were detected based on principal component analysis of grayscale distribution in search bars of given number and...A technology for unintended lane departure warning was proposed. As crucial information, lane boundaries were detected based on principal component analysis of grayscale distribution in search bars of given number and then each search bar was tracked using Kalman filter between frames. The lane detection performance was evaluated and demonstrated in ways of receiver operating characteristic, dice similarity coefficient and real-time performance. For lane departure detection, a lane departure risk evaluation model based on lasting time and frequency was effectively executed on the ARM-based platform. Experimental results indicate that the algorithm generates satisfactory lane detection results under different traffic and lighting conditions, and the proposed warning mechanism sends effective warning signals, avoiding most false warning.展开更多
A new on-line batch process monitoring and diagnosing approach based on Fisher discriminant analysis (FDA) was proposed. This method does not need to predict the future observations of variables, so it is more sensi...A new on-line batch process monitoring and diagnosing approach based on Fisher discriminant analysis (FDA) was proposed. This method does not need to predict the future observations of variables, so it is more sensitive to fault detection and stronger implement for monitoring. In order to improve the monitoring performance, the variables trajectories of batch process are separated into several blocks. The key to the proposed approach for on-line monitoring is to calculate the distance of block data that project to low-dimension Fisher space between new batch and reference batch. Comparing the distance with the predefine threshold, it can be considered whether the batch process is normal or abnormal. Fault diagnosis is performed based on the weights in fault direction calculated by FDA. The proposed method was applied to the simulation model of fed-batch penicillin fermentation and the resuits were compared with those obtained using MPCA. The simulation results clearly show that the on-line monitoring method based on FDA is more efficient than the MPCA.展开更多
Real-time electricity price( RTEP) influence factor extraction is essential to forecasting accurate power system electricity prices. At present,new electricity price forecasting models have been studied to improve pre...Real-time electricity price( RTEP) influence factor extraction is essential to forecasting accurate power system electricity prices. At present,new electricity price forecasting models have been studied to improve predictive accuracy,ignoring the extraction and analysis of RTEP influence factors. In this study,a correlation analysis method is proposed based on stochastic matrix theory.Firstly, an augmented matrix is formulated, including RTEP influence factor data and RTEP state data. Secondly, data correlation analysis results are obtained given the statistical characteristics of source data based on stochastic matrix theory.Mean spectral radius( MSR) is used as the measure of correlativity.Finally,the proposed method is evaluated in New England electricity markets and compared with the BP neural network forecasting method. Experimental results show that the extracted index system comprehensively generalizes RTEP influence factors,which play a significant role in improving RTEP forecasting accuracy.展开更多
Today with certainty, the petroleum industry is fostering sanguinely the fields’ development programs for the optimization of reservoir characterization through worth-full appliances of computer analysis techniques. ...Today with certainty, the petroleum industry is fostering sanguinely the fields’ development programs for the optimization of reservoir characterization through worth-full appliances of computer analysis techniques. The time element is of prime importance for optimistic petroleum development projects. Therefore, the frontline of “Real-time Analysis” is added into the applications of computer solving techniques for achieving and sketching up the real-time cost effectiveness in analyzing field development programs. It focuses on the phases of real-time well test data acquisition system, real-time secure access to the well test data either on field or in office and real-time data interpretation unit. This interface will yield the productive results for the field of reservoir’s pressure transient analysis and wells’ systems analysis by following the up-to-date preferred, accurate and effective well test analytical principles with modern real-time computer applications and techniques. It also lays emphasis for the comfort and reliability of data in creating best interpersonal working modes within a reputable and esteemed petroleum development organization.展开更多
A real-time monitoring and 3D visualization analysis system is proposed for dam foundation curtain grouting. Based on the real-time control technology, the optimization method and the set theory, a mathematical model ...A real-time monitoring and 3D visualization analysis system is proposed for dam foundation curtain grouting. Based on the real-time control technology, the optimization method and the set theory, a mathematical model of the system is established. The real-time collection and transmission technology of the grouting data provides a data foundation for the system. The real-time grouting monitoring and dynamic alarming method helps the system control the grouting quality during the grouting process, thus, the abnormalities of grouting, such as jacking and hydraulic uplift, can be effectively controlled. In addition, the 3D grouting visualization analysis technology is proposed to establish the grouting information model(GIM). The GIM provides a platform to visualize and analyze the grouting process and results. The system has been applied to a hydraulic project of China as a case study, and the application results indicate that the real-time grouting monitoring and 3D visualization analysis for the grouting process can help engineers control the grouting quality more efficiently.展开更多
At present, the on-line monitoring is widely applied to the power line monitoring. In this paper, a new mechanical calculation model is established according to the on-line monitoring. And this model is based on the p...At present, the on-line monitoring is widely applied to the power line monitoring. In this paper, a new mechanical calculation model is established according to the on-line monitoring. And this model is based on the parameters that tension sensors and angle sensors on suspended points detect, and combines with the parameters of the wire itself, and also considers the deflection angel of wires due to wind. In this model, mechanics parameters of wires are turned into the new coordinate plane after deflection angel of wires due to wind, or windage yaw plane. A statics tension balance equation is built in the vertical direction of the new windage yaw plane. According to the theoretical analysis and algorithm, we verify the accuracy of this newly developed mechanical calculation model.展开更多
By thorough research on the prominent periodic and aperiodic scheduling algorithms,anon-line hard real-time scheduler is presented,which is applicable to the scheduling of packets over a link.This scheduler,based on b...By thorough research on the prominent periodic and aperiodic scheduling algorithms,anon-line hard real-time scheduler is presented,which is applicable to the scheduling of packets over a link.This scheduler,based on both Rate Monotonic,pinwheel scheduling algorithm Sr and Polling Serverscheduling algorithms,can rapidly judge the schedulability and then automatically generate a bus tablefor the scheduling algorithm to schedule the packets as the periodic packets.The implementation of thescheduler is simple and easy to use,and it is effective for the utilization of bus link.The orderly executionof the bus table can not only guarantee the performance of the hard real time but also avoid the blockageand interruption of the message transmission.So the scheduler perfectly meets the demand of hard real-time communication system on the field bus domain.展开更多
Predicting the mechanical behaviors of structure and perceiving the anomalies in advance are essential to ensuring the safe operation of infrastructures in the long run.In addition to the incomplete consideration of i...Predicting the mechanical behaviors of structure and perceiving the anomalies in advance are essential to ensuring the safe operation of infrastructures in the long run.In addition to the incomplete consideration of influencing factors,the prediction time scale of existing studies is rough.Therefore,this study focuses on the development of a real-time prediction model by coupling the spatio-temporal correlation with external load through autoencoder network(ATENet)based on structural health monitoring(SHM)data.An autoencoder mechanism is performed to acquire the high-level representation of raw monitoring data at different spatial positions,and the recurrent neural network is applied to understanding the temporal correlation from the time series.Then,the obtained temporal-spatial information is coupled with dynamic loads through a fully connected layer to predict structural performance in next 12 h.As a case study,the proposed model is formulated on the SHM data collected from a representative underwater shield tunnel.The robustness study is carried out to verify the reliability and the prediction capability of the proposed model.Finally,the ATENet model is compared with some typical models,and the results indicate that it has the best performance.ATENet model is of great value to predict the realtime evolution trend of tunnel structure.展开更多
A newly developed on-line visual ferrograph(OLVF) gives a new way for engine wear state monitoring. However, the reliability of on-line wear debris image processing is challenged in both monitoring ship engines and ...A newly developed on-line visual ferrograph(OLVF) gives a new way for engine wear state monitoring. However, the reliability of on-line wear debris image processing is challenged in both monitoring ship engines and the Caterpillar bench test, which weren't reported in previous studies. Two problems were encountered in monitoring engines and processing images. First, small wear debris becomes hard to be identified from the image background after monitoring for a period of time. Second, the identification accuracy for wear debris is greatly reduced by background noise because of oil getting dark after nmning a period of time. Therefore, the methods adopted in image processing are examined. Two main reasons for the problems in wear debris identification are generalized as follows. Generally, the binary threshold was determined by global image pixels, and was easily affected by the non-objective zone in the image. The boundary of the objective zone in the binary image was misrecognized because of oil color becoming lighter during monitoring. Accordingly, improvements were made as follows. The objective zone in a global binary image was identified by scanning a column of pixels, and then a secondary binary process confined in the objective zone was carried out to identify small wear debris. Linear filtering with a specific template was used to depress noise in a binary image, and then a low-pass filtering was performed to eliminate the residual noise. Furthermore, the morphology parameters of single wear debris were extracted by separating each wear debris by a gray stack, and two indexes, WRWR (relative wear rate) and WRWS (relative wear severity), were proposed for wear description. New indexes were provided for on-line monitoring of engines.展开更多
A method was proposed to evaluate the real-time reliability for a single product based on damaged measurement degradation data.Most researches on degradation analysis often assumed that the measurement process did not...A method was proposed to evaluate the real-time reliability for a single product based on damaged measurement degradation data.Most researches on degradation analysis often assumed that the measurement process did not have any impact on the product's performance.However,in some cases,the measurement process may exert extra stress on products being measured.To obtain trustful results in such a situation,a new degradation model was derived.Then,by fusing the prior information of product and its own on-line degradation data,the real-time reliability was evaluated on the basis of Bayesian formula.To make the proposed method more practical,a procedure based on expectation maximization (EM) algorithm was presented to estimate the unknown parameters.Finally,the performance of the proposed method was illustrated by a simulation study.The results show that ignoring the influence of the damaged measurement process can lead to biased evaluation results,if the damaged measurement process is involved.展开更多
文摘This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends that they are not the same. The concept of cyber security is explored, which goes beyond protecting information resources to include a wider variety of assets, including people [1]. Protecting information assets is the main goal of traditional information security, with consideration to the human element and how people fit into the security process. On the other hand, cyber security adds a new level of complexity, as people might unintentionally contribute to or become targets of cyberattacks. This aspect presents moral questions since it is becoming more widely accepted that society has a duty to protect weaker members of society, including children [1]. The study emphasizes how important cyber security is on a larger scale, with many countries creating plans and laws to counteract cyberattacks. Nevertheless, a lot of these sources frequently neglect to define the differences or the relationship between information security and cyber security [1]. The paper focus on differentiating between cybersecurity and information security on a larger scale. The study also highlights other areas of cybersecurity which includes defending people, social norms, and vital infrastructure from threats that arise from online in addition to information and technology protection. It contends that ethical issues and the human factor are becoming more and more important in protecting assets in the digital age, and that cyber security is a paradigm shift in this regard [1].
基金supported by ZTE Industry-University-Institute Cooperation Funds under Grant No.2022ZTE09.
文摘Real-time system timing analysis is crucial for estimating the worst-case execution time(WCET)of a program.To achieve this,static or dynamic analysis methods are used,along with targeted modeling of the actual hardware system.This literature review focuses on calculating WCET for multi-core processors,providing a survey of traditional methods used for static and dynamic analysis and highlighting the major challenges that arise from different program execution scenarios on multi-core platforms.This paper outlines the strengths and weaknesses of current methodologies and offers insights into prospective areas of research on multi-core analysis.By presenting a comprehensive analysis of the current state of research on multi-core processor analysis for WCET estimation,this review aims to serve as a valuable resource for researchers and practitioners in the field.
基金supported by the China Electronics Technology Innovation Fund Project(Project No.KJ2202008).
文摘This paper designs a space electromagnetic interference signal test and analysis technology verification platform.The article firstly introduces the general scheme of the technical verification platform and then describes each component unit of the hardware and the overall structure of the software in detail.The platform can achieve a 10 MHz~50 GHz working frequency band,1.2 GHz acquisition and real-time recording bandwidth,6 GB/s recording rate,and 12 TB recording capacity.
文摘Based on the fact that on-line chat has become the most developing language form in the information age, this article point out the stylistic features of on-line English chat. Though in written language form, such language is spoken language in nature, thus it is worthwhile to analyze this special phaenomenon in lexical and grammatical level.
文摘The application and development of a wide-area measurement system(WAMS)has enabled many applications and led to several requirements based on dynamic measurement data.Such data are transmitted as big data information flow.To ensure effective transmission of wide-frequency electrical information by the communication protocol of a WAMS,this study performs real-time traffic monitoring and analysis of the data network of a power information system,and establishes corresponding network optimization strategies to solve existing transmission problems.This study utilizes the traffic analysis results obtained using the current real-time dynamic monitoring system to design an optimization strategy,covering the optimization in three progressive levels:the underlying communication protocol,source data,and transmission process.Optimization of the system structure and scheduling optimization of data information are validated to be feasible and practical via tests.
文摘A new path planning method for mobile robots in globally unknown environment with moving obstacles is pre- sented. With an autoregressive (AR) model to predict the future positions of moving obstacles, and the predicted position taken as the next position of moving obstacles, a motion path in dynamic uncertain environment is planned by means of an on-line real-time path planning technique based on polar coordinates in which the desirable direction angle is taken into consideration as an optimization index. The effectiveness, feasibility, high stability, perfect performance of obstacle avoidance, real-time and optimization capability are demonstrated by simulation examples.
基金Projects(50875090,50905063) supported by the National Natural Science Foundation of ChinaProject(2009AA04Z111) supported by the National High Technology Research and Development Program of China+2 种基金Project(20090460769) supported by China Postdoctoral Science FoundationProject(2011ZM0070) supported by the Fundamental Research Funds for the Central Universities in ChinaProject(S2011010001155) supported by the Natural Science Foundation of Guangdong Province,China
文摘In order to optimize the embedded system implementation for Ethernet-based computer numerical control (CNC) system, it is very necessary to establish the performance analysis model and further adopt the codesign method from the control, communication and computing perspectives. On the basis of analyzing real-time Ethemet, system architecture, time characteristic parameters of control-loop ere, a performance analysis model for real-time Ethemet-based CNC system was proposed, which is able to include the timing effects caused by the implementation platform in the simulation. The key for establishing the model is accomplished by designing the error analysis module and the controller nodes. Under the restraint of CPU resource and communication bandwidth, the experiment with a case study was conducted, and the results show that if the deadline miss ratio of data packets is 0.2%, then the percentage error is 1.105%. The proposed model can be used at several stages of CNC system development.
文摘As multimedia data sharing increases,data security in mobile devices and its mechanism can be seen as critical.Biometrics combines the physiological and behavioral qualities of an individual to validate their character in real-time.Humans incorporate physiological attributes like a fingerprint,face,iris,palm print,finger knuckle print,Deoxyribonucleic Acid(DNA),and behavioral qualities like walk,voice,mark,or keystroke.The main goal of this paper is to design a robust framework for automatic face recognition.Scale Invariant Feature Transform(SIFT)and Speeded-up Robust Features(SURF)are employed for face recognition.Also,we propose a modified Gabor Wavelet Transform for SIFT/SURF(GWT-SIFT/GWT-SURF)to increase the recognition accuracy of human faces.The proposed scheme is composed of three steps.First,the entropy of the image is removed using Discrete Wavelet Transform(DWT).Second,the computational complexity of the SIFT/SURF is reduced.Third,the accuracy is increased for authentication by the proposed GWT-SIFT/GWT-SURF algorithm.A comparative analysis of the proposed scheme is done on real-time Olivetti Research Laboratory(ORL)and Poznan University of Technology(PUT)databases.When compared to the traditional SIFT/SURF methods,we verify that the GWT-SIFT achieves the better accuracy of 99.32%and the better approach is the GWT-SURF as the run time of the GWT-SURF for 100 images is 3.4 seconds when compared to the GWT-SIFT which has a run time of 4.9 seconds for 100 images.
文摘In this paper, a mathematical model of real-time simulation is given, and the problem of convergence on real-time Runge-Kutta algorithms is analysed. At last a theorem on the relation between the order of compensation and the convergent order of real-time algorithm is proved.
文摘Opinion (sentiment) analysis on big data streams from the constantly generated text streams on social media networks to hundreds of millions of online consumer reviews provides many organizations in every field with opportunities to discover valuable intelligence from the massive user generated text streams. However, the traditional content analysis frameworks are inefficient to handle the unprecedentedly big volume of unstructured text streams and the complexity of text analysis tasks for the real time opinion analysis on the big data streams. In this paper, we propose a parallel real time sentiment analysis system: Social Media Data Stream Sentiment Analysis Service (SMDSSAS) that performs multiple phases of sentiment analysis of social media text streams effectively in real time with two fully analytic opinion mining models to combat the scale of text data streams and the complexity of sentiment analysis processing on unstructured text streams. We propose two aspect based opinion mining models: Deterministic and Probabilistic sentiment models for a real time sentiment analysis on the user given topic related data streams. Experiments on the social media Twitter stream traffic captured during the pre-election weeks of the 2016 Presidential election for real-time analysis of public opinions toward two presidential candidates showed that the proposed system was able to predict correctly Donald Trump as the winner of the 2016 Presidential election. The cross validation results showed that the proposed sentiment models with the real-time streaming components in our proposed framework delivered effectively the analysis of the opinions on two presidential candidates with average 81% accuracy for the Deterministic model and 80% for the Probabilistic model, which are 1% - 22% improvements from the results of the existing literature.
基金Project(51175159)supported by the National Natural Science Foundation of ChinaProject(2013WK3024)supported by the Science andTechnology Planning Program of Hunan Province,ChinaProject(CX2013B146)supported by the Hunan Provincial InnovationFoundation for Postgraduate,China
文摘A technology for unintended lane departure warning was proposed. As crucial information, lane boundaries were detected based on principal component analysis of grayscale distribution in search bars of given number and then each search bar was tracked using Kalman filter between frames. The lane detection performance was evaluated and demonstrated in ways of receiver operating characteristic, dice similarity coefficient and real-time performance. For lane departure detection, a lane departure risk evaluation model based on lasting time and frequency was effectively executed on the ARM-based platform. Experimental results indicate that the algorithm generates satisfactory lane detection results under different traffic and lighting conditions, and the proposed warning mechanism sends effective warning signals, avoiding most false warning.
文摘A new on-line batch process monitoring and diagnosing approach based on Fisher discriminant analysis (FDA) was proposed. This method does not need to predict the future observations of variables, so it is more sensitive to fault detection and stronger implement for monitoring. In order to improve the monitoring performance, the variables trajectories of batch process are separated into several blocks. The key to the proposed approach for on-line monitoring is to calculate the distance of block data that project to low-dimension Fisher space between new batch and reference batch. Comparing the distance with the predefine threshold, it can be considered whether the batch process is normal or abnormal. Fault diagnosis is performed based on the weights in fault direction calculated by FDA. The proposed method was applied to the simulation model of fed-batch penicillin fermentation and the resuits were compared with those obtained using MPCA. The simulation results clearly show that the on-line monitoring method based on FDA is more efficient than the MPCA.
基金National Natural Science Foundation of China(No.61701104)the “13th Five Year Plan” Research Foundation of Jilin Provincial Department of Education,China(No.JJKH2017018KJ)
文摘Real-time electricity price( RTEP) influence factor extraction is essential to forecasting accurate power system electricity prices. At present,new electricity price forecasting models have been studied to improve predictive accuracy,ignoring the extraction and analysis of RTEP influence factors. In this study,a correlation analysis method is proposed based on stochastic matrix theory.Firstly, an augmented matrix is formulated, including RTEP influence factor data and RTEP state data. Secondly, data correlation analysis results are obtained given the statistical characteristics of source data based on stochastic matrix theory.Mean spectral radius( MSR) is used as the measure of correlativity.Finally,the proposed method is evaluated in New England electricity markets and compared with the BP neural network forecasting method. Experimental results show that the extracted index system comprehensively generalizes RTEP influence factors,which play a significant role in improving RTEP forecasting accuracy.
文摘Today with certainty, the petroleum industry is fostering sanguinely the fields’ development programs for the optimization of reservoir characterization through worth-full appliances of computer analysis techniques. The time element is of prime importance for optimistic petroleum development projects. Therefore, the frontline of “Real-time Analysis” is added into the applications of computer solving techniques for achieving and sketching up the real-time cost effectiveness in analyzing field development programs. It focuses on the phases of real-time well test data acquisition system, real-time secure access to the well test data either on field or in office and real-time data interpretation unit. This interface will yield the productive results for the field of reservoir’s pressure transient analysis and wells’ systems analysis by following the up-to-date preferred, accurate and effective well test analytical principles with modern real-time computer applications and techniques. It also lays emphasis for the comfort and reliability of data in creating best interpersonal working modes within a reputable and esteemed petroleum development organization.
基金Supported by the Innovative Research Groups of the National Natural Science Foundation of China(No.51321065)the National Natural Science Foundation of China(No.51339003 and No.51439005)
文摘A real-time monitoring and 3D visualization analysis system is proposed for dam foundation curtain grouting. Based on the real-time control technology, the optimization method and the set theory, a mathematical model of the system is established. The real-time collection and transmission technology of the grouting data provides a data foundation for the system. The real-time grouting monitoring and dynamic alarming method helps the system control the grouting quality during the grouting process, thus, the abnormalities of grouting, such as jacking and hydraulic uplift, can be effectively controlled. In addition, the 3D grouting visualization analysis technology is proposed to establish the grouting information model(GIM). The GIM provides a platform to visualize and analyze the grouting process and results. The system has been applied to a hydraulic project of China as a case study, and the application results indicate that the real-time grouting monitoring and 3D visualization analysis for the grouting process can help engineers control the grouting quality more efficiently.
文摘At present, the on-line monitoring is widely applied to the power line monitoring. In this paper, a new mechanical calculation model is established according to the on-line monitoring. And this model is based on the parameters that tension sensors and angle sensors on suspended points detect, and combines with the parameters of the wire itself, and also considers the deflection angel of wires due to wind. In this model, mechanics parameters of wires are turned into the new coordinate plane after deflection angel of wires due to wind, or windage yaw plane. A statics tension balance equation is built in the vertical direction of the new windage yaw plane. According to the theoretical analysis and algorithm, we verify the accuracy of this newly developed mechanical calculation model.
基金Supported by the Emphases Science and Technology Project Foundation of Sichuan Province(NO.02GG006-037)
文摘By thorough research on the prominent periodic and aperiodic scheduling algorithms,anon-line hard real-time scheduler is presented,which is applicable to the scheduling of packets over a link.This scheduler,based on both Rate Monotonic,pinwheel scheduling algorithm Sr and Polling Serverscheduling algorithms,can rapidly judge the schedulability and then automatically generate a bus tablefor the scheduling algorithm to schedule the packets as the periodic packets.The implementation of thescheduler is simple and easy to use,and it is effective for the utilization of bus link.The orderly executionof the bus table can not only guarantee the performance of the hard real time but also avoid the blockageand interruption of the message transmission.So the scheduler perfectly meets the demand of hard real-time communication system on the field bus domain.
基金This work is supported by the National Natural Science Foundation of China(Grant No.51991392)Key Deployment Projects of Chinese Academy of Sciences(Grant No.ZDRW-ZS-2021-3-3)the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(Grant No.2019QZKK0904).
文摘Predicting the mechanical behaviors of structure and perceiving the anomalies in advance are essential to ensuring the safe operation of infrastructures in the long run.In addition to the incomplete consideration of influencing factors,the prediction time scale of existing studies is rough.Therefore,this study focuses on the development of a real-time prediction model by coupling the spatio-temporal correlation with external load through autoencoder network(ATENet)based on structural health monitoring(SHM)data.An autoencoder mechanism is performed to acquire the high-level representation of raw monitoring data at different spatial positions,and the recurrent neural network is applied to understanding the temporal correlation from the time series.Then,the obtained temporal-spatial information is coupled with dynamic loads through a fully connected layer to predict structural performance in next 12 h.As a case study,the proposed model is formulated on the SHM data collected from a representative underwater shield tunnel.The robustness study is carried out to verify the reliability and the prediction capability of the proposed model.Finally,the ATENet model is compared with some typical models,and the results indicate that it has the best performance.ATENet model is of great value to predict the realtime evolution trend of tunnel structure.
基金supported by National Basic Research Program of China (973 Program, Grant No. 2009CB724404)National Hitech Research and Development Program of China (863 Program, Grant No. 2006AA04Z431)National Natural Science Foundation of China (Grant No. 50905135)
文摘A newly developed on-line visual ferrograph(OLVF) gives a new way for engine wear state monitoring. However, the reliability of on-line wear debris image processing is challenged in both monitoring ship engines and the Caterpillar bench test, which weren't reported in previous studies. Two problems were encountered in monitoring engines and processing images. First, small wear debris becomes hard to be identified from the image background after monitoring for a period of time. Second, the identification accuracy for wear debris is greatly reduced by background noise because of oil getting dark after nmning a period of time. Therefore, the methods adopted in image processing are examined. Two main reasons for the problems in wear debris identification are generalized as follows. Generally, the binary threshold was determined by global image pixels, and was easily affected by the non-objective zone in the image. The boundary of the objective zone in the binary image was misrecognized because of oil color becoming lighter during monitoring. Accordingly, improvements were made as follows. The objective zone in a global binary image was identified by scanning a column of pixels, and then a secondary binary process confined in the objective zone was carried out to identify small wear debris. Linear filtering with a specific template was used to depress noise in a binary image, and then a low-pass filtering was performed to eliminate the residual noise. Furthermore, the morphology parameters of single wear debris were extracted by separating each wear debris by a gray stack, and two indexes, WRWR (relative wear rate) and WRWS (relative wear severity), were proposed for wear description. New indexes were provided for on-line monitoring of engines.
基金Project(60904002)supported by the National Natural Science Foundation of China
文摘A method was proposed to evaluate the real-time reliability for a single product based on damaged measurement degradation data.Most researches on degradation analysis often assumed that the measurement process did not have any impact on the product's performance.However,in some cases,the measurement process may exert extra stress on products being measured.To obtain trustful results in such a situation,a new degradation model was derived.Then,by fusing the prior information of product and its own on-line degradation data,the real-time reliability was evaluated on the basis of Bayesian formula.To make the proposed method more practical,a procedure based on expectation maximization (EM) algorithm was presented to estimate the unknown parameters.Finally,the performance of the proposed method was illustrated by a simulation study.The results show that ignoring the influence of the damaged measurement process can lead to biased evaluation results,if the damaged measurement process is involved.