期刊文献+
共找到2,614篇文章
< 1 2 131 >
每页显示 20 50 100
Heteroatom anchors Fe-Mn dual-atom catalysts with bi-functional oxygen catalytic activity for low-temperature rechargeable flexible Zn-air batteries
1
作者 Yuting He Hongtao Li +3 位作者 Yi Wang Yufei Jia Yongning Liu Qiang Tan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期610-620,I0014,共12页
M-N-C(M=Fe,Co,Ni,etc.) catalyst owns high catalytic activity in the oxygen catalytic reaction which is the most likely to replace the Pt-based catalysts.But it is still a challenge to further increase the active site ... M-N-C(M=Fe,Co,Ni,etc.) catalyst owns high catalytic activity in the oxygen catalytic reaction which is the most likely to replace the Pt-based catalysts.But it is still a challenge to further increase the active site density.This article constructs the high-efficiency FeMn-N/S-C-1000 catalyst to realize ORR/OER bifunctional catalysis by hetero-atom,bimetal(Fe,Mn) doped simultaneously strategy.When evaluated it as bi-functional electro-catalysts,FeMn-N/S-C-1000 exhibits excellent catalytic activity(E_(1/2)=0.924 V,E_(j=10)=1.617 V) in alkaline media,outperforms conventional Pt/C,RuO_(2) and most non-precious-metal catalysts reported recently,Such outstanding performance is owing to N,S co-coordinated with metal to form multi-types of single atom,dual atom active sites to carry out bi-catalysis.Importantly,nitrite poison test provides the proof that the active sites of FeMn-N/S-C are more than that of single-atom catalysts to promote catalytic reactions directly.To better understand the local structure of Fe and Mn active sites,XAS and DFT were employed to reveal that FeMn-N_5/S-C site plays the key role during catalysis.Notably,the FeMn-N/S-C-1000 based low-temperature rechargeable flexible Zn-air also exhibits superior discharge performance and extraordinary durability at-40℃.This work will provide a new idea to design diatomic catalysts applied in low-temperature rechargeable batteries. 展开更多
关键词 Fe Mn-N/S-C-1000 ORR OER rechargeable flexible Zn-air batteries
下载PDF
Superior oxygen electrocatalyst derived from metal organic coordination polymers by instantaneous nucleation and epitaxial growth for rechargeable Li-O_(2) battery 被引量:1
2
作者 Dongdong Li Jinbiao Chen +4 位作者 Yingtong Chen Yian Wang Yanpeng Fu Minhua Shao Zhicong Shi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期169-177,I0005,共10页
Rechargeable aprotic Li-O_(2)batteries have attractea increasing attention due to their extremely high capacity,and it is very important to design appropriate strategies to synthesize efficient catalysts used as oxyge... Rechargeable aprotic Li-O_(2)batteries have attractea increasing attention due to their extremely high capacity,and it is very important to design appropriate strategies to synthesize efficient catalysts used as oxygen cathode.In present work,we present an expedient "instantaneous nucleation and epitaxial growth"(INEG) synthesis strategy for convenient and large-scale synthesis of ultrafine MOCPs nanoparticles(size 50-100 nm) with obvious advantages such as fast synthesis,high yields,low costs and reduced synthetic steps.The bimetallic Ru/Co-MOCPs are further pyrolyzed to obtain bimetallic Coand low content of Ru-based nanoparticles embedded within nitrogen-doped carbon(Ru/Co@N-C) as an efficient catalyst used in Li-O_(2)battery.The Ru/Co@N-C provides porous carbon framework for the ion transportation and O_(2)diffusion,and has large amounts of metal/nonmetal sites as active site to promote the oxygen reduction reaction(ORR)/oxygen evolution reaction(OER) in Li-O_(2)batteries.As a consequence,a high discharge specific capacity of 15246 mA h g^(-1)at 250 mA g^(-1), excellent rate capability at different current densities,and stable overpotential during cycling,are achieved.This work opened up a new understanding for the industrialized synthesis of ultrafine catalysts for Li-O_(2)batteries with excellent structural characteristics and electrochemical performance. 展开更多
关键词 Ultrafine MOCPs Expedient synthesis strategy Derivative Bimetallic sites rechargeable Li-O_(2)batteries
下载PDF
Zinc–Bromine Rechargeable Batteries:From Device Configuration,Electrochemistry,Material to Performance Evaluation
3
作者 Norah S.Alghamdi Masud Rana +6 位作者 Xiyue Peng Yongxin Huang Jaeho Lee Jingwei Hou Ian R.Gentle Lianzhou Wang Bin Luo 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第11期349-384,共36页
Zinc–bromine rechargeable batteries(ZBRBs)are one of the most powerful candidates for next-generation energy storage due to their potentially lower material cost,deep discharge capability,non-flammable electrolytes,r... Zinc–bromine rechargeable batteries(ZBRBs)are one of the most powerful candidates for next-generation energy storage due to their potentially lower material cost,deep discharge capability,non-flammable electrolytes,relatively long lifetime and good reversibility.However,many opportunities remain to improve the efficiency and stability of these batteries for long-life operation.Here,we discuss the device configurations,working mechanisms and performance evaluation of ZBRBs.Both non-flow(static)and flow-type cells are highlighted in detail in this review.The fundamental electrochemical aspects,including the key challenges and promising solutions,are discussed,with particular attention paid to zinc and bromine half-cells,as their performance plays a critical role in determining the electrochemical performance of the battery system.The following sections examine the key performance metrics of ZBRBs and assessment methods using various ex situ and in situ/operando techniques.The review concludes with insights into future developments and prospects for high-performance ZBRBs. 展开更多
关键词 Zinc–bromine rechargeable batteries Cell configurations Electrochemical property Performance metrics Assessment methods
下载PDF
Electrolyte additive enhances the electrochemical performance of Cu for rechargeable Cu//Zn batteries
4
作者 Xinxin Song Chenggang Wang +6 位作者 Dongdong Wang Huili Peng Cheng Wang Chunsheng Wang Weiliu Fan Jian Yang Yitai Qian 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期172-179,I0005,共9页
Cu-based cathodes in aqueous batteries become very attractive in view of high theoretical capacity,moderate operation voltage and rich reserves of raw materials.However,their applications are obstructed by serious sid... Cu-based cathodes in aqueous batteries become very attractive in view of high theoretical capacity,moderate operation voltage and rich reserves of raw materials.However,their applications are obstructed by serious side reactions.The side reaction mainly arises from the spontaneous formation of Cu_(2)O,which occupies the electrode surface and lowers the reaction reversibility.Here,Na_(2)EDTA is introduced to address these issues.Both experimental results and theoretical calculations indicate that the Na_(2)EDTA reshapes the solvation structure of Cu^(2+)and modifies the electrode/electrolyte interface.Therefore,the redox potential of Cu^(2+)/Cu_(2)O is reduced and the surface of Cu is protected from H2O,thereby inhibiting the formation of Cu_(2)O.Meanwhile,the change in the solvation structure reduces the electrostatic repulsion between Cu^(2+)and the cathode,leading to high local concentration and benefiting uniform deposition.The results shed light on the applications of rechargeable Cu-based batteries. 展开更多
关键词 CU ZN Reaction mechanisms Electrolyte additive rechargeable batteries
下载PDF
Metal-organic frameworks based single-atom catalysts for advanced fuel cells and rechargeable batteries
5
作者 Yifei Wu Peng Hu +5 位作者 Fengping Xiao Xiaoting Yu Wenqi Yang Minqi Liang Ziwei Liang Aixin Zhu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期501-534,I0012,共35页
The next-generation energy storage systems such as fuel cells,metal-air batteries,and alkali metal(Li,Na)-chalcogen(S,Se)batteries have received increasing attention owing to their high energy density and low cost.How... The next-generation energy storage systems such as fuel cells,metal-air batteries,and alkali metal(Li,Na)-chalcogen(S,Se)batteries have received increasing attention owing to their high energy density and low cost.However,one of the main obstacles of these systems is the poor reaction kinetics in the involved chemical reactions.Therefore,it is essential to incorporate suitable and efficient catalysts into the cell.These years,single-atom catalysts(SACs)are emerging as a frontier in catalysis due to their maximum atom efficiency and unique reaction selectivity.For SACs fabrication,metal-organic frameworks(MOFs)have been confirmed as promising templates or precursors due to their high metal loadings,structural adjustability,porosity,and tailorable catalytic site.In this review,we summarize effective strategies for fabricating SACs by MOFs with corresponding advanced characterization techniques and illustrate the key role of MOFs-based SACs in these batteries by explaining their reaction mechanisms and challenges.Finally,current applications,prospects,and opportunities for MOFs-based SACs in energy storage systems are discussed. 展开更多
关键词 Metal-organic frameworks Single-atom catalysts rechargeable batteries ELECTROCATALYSTS Coordination configuration
下载PDF
Schiff-base polymer derived FeCo-N-doped porous carbon flowers as bifunctional oxygen electrocatalyst for long-life rechargeable zinc-air batteries
6
作者 Yusong Deng Jiahui Zheng +3 位作者 Bei Liu Huaming Li Mei Yang Zhiyu Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期470-478,I0012,共10页
Rational design and exploration of low-cost and robust bifunctional oxygen electrocatalysts are vitally important for developing high-performance zinc-air batteries(ZABs).Herein,we reported a facile yet cost-efficient... Rational design and exploration of low-cost and robust bifunctional oxygen electrocatalysts are vitally important for developing high-performance zinc-air batteries(ZABs).Herein,we reported a facile yet cost-efficient approach to construct a bifunctional oxygen reduction reaction(ORR)/oxygen evolution reaction(OER)electrocatalyst composed of N-doped porous carbon nanosheet flowers decorated with Fe Co nanoparticles(Fe Co/N-CF).Rational design of this catalyst is achieved by designing Schiff-base polymer with unique molecular structure via hydrogen bonding of cyanuramide and terephthalaldehyde polycondensate in the presence of metal cations.It exhibits excellent activity and stability for electrocatalysis of ORR/OER,enabling ZAB with a high peak power density of 172 m W cm^(-2)and a large specific capacity of 811 m A h g^(-1)Znat large current.The rechargeable ZAB demonstrates excellent durability for 1000 h with slight voltage decay,far outperforming a couple of precious Pt/Ir-based catalysts.Density functional theory(DFT)calculations reveal that high activity of bimetallic Fe Co stems from enhanced O_(2)and OH-adsorption and accelerated O_(2)dissociation by OAO bond activation. 展开更多
关键词 rechargeable zinc-air batteries Oxygen electrocatalyst Schiff-base polymer Bimetallic FeCo N-doped porous carbon
下载PDF
An efficient Hauser-base electrolyte for rechargeable magnesium batteries
7
作者 Mingxiang Cheng Yaru Wang +5 位作者 Duo Zhang Shuxin Zhang Yang Yang Xuecheng Lv Jiulin Wang Yanna NuLi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期1-10,I0001,共11页
Rechargeable magnesium batteries(RMBs)are considered the promising candidates for post lithium-ion batteries due to the abundant storage,high capacity,and dendrite-rare characteristic of Mg anode.However,the lack of p... Rechargeable magnesium batteries(RMBs)are considered the promising candidates for post lithium-ion batteries due to the abundant storage,high capacity,and dendrite-rare characteristic of Mg anode.However,the lack of practical electrolytes impedes the development and application of RMBs.Here,through a one-step reaction of LiCl congenital-containing Knochel–Hauser base TMPL(2,2,6,6-tetrame thylpiperidinylmagnesium chloride lithium chloride complex)with Lewis acid AlCl_(3),we successfully synthesized an efficient amino-magnesium halide TMPLA electrolyte.Raman and mass spectroscopy identified that the electrolyte comprises the typical di-nuclear copolymer[Mg_(2)Cl_(3)·6THF]+cation group and[(TMP)2AlCl_(2)]-anion group,further supported by the results of density functional theory calculations(DFT)and the Molecular dynamics(MD)simulations.The TMPLA electrolyte exhibits promising electrochemical performance,including available anodic stability(>2.65 V vs.SS),high ionic conductivity(6.05mS cm^(-1)),and low overpotential(<0.1 V)as well as appropriate Coulombic efficiency(97.3%)for Mg plating/stripping.Both the insertion Mo6S8cathode and conversion Cu S cathode delivered a desirable electrochemical performance with high capacity and good cycling stability based on the TMPLA electrolyte.In particular,when compatible with low cost and easily synthesized Cu S,the Cu S||Mg cell displayed an extremely high discharge capacity of 458.8 mAh g^(-1)for the first cycle and stabilized at 170.2 mAh g^(-1)with high Coulombic efficiency(99.1%)after 50 cycles at 0.05 C.Our work proposes an efficient electrolyte with impressive compatibility with Mg anode and insertion/conversion cathode for practical RMBs and provides a more profound knowledge of the Lewis acid–base reaction mechanisms. 展开更多
关键词 rechargeable magnesium batteries Mg-Li dual-salt electrolyte Hauser-base In-situ synthesis Lewis acid–base reaction CuS cathode
下载PDF
3D printing critical materials for rechargeable batteries: from materials, design and optimization strategies to applications
8
作者 Yongbiao Mu Youqi Chu +6 位作者 Lyuming Pan Buke Wu Lingfeng Zou Jiafeng He Meisheng Han Tianshou Zhao Lin Zeng 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第4期215-245,共31页
Three-dimensional(3D)printing,an additive manufacturing technique,is widely employed for the fabrication of various electrochemical energy storage devices(EESDs),such as batteries and supercapacitors,ranging from nano... Three-dimensional(3D)printing,an additive manufacturing technique,is widely employed for the fabrication of various electrochemical energy storage devices(EESDs),such as batteries and supercapacitors,ranging from nanoscale to macroscale.This technique offers excellent manufacturing flexibility,geometric designability,cost-effectiveness,and eco-friendliness.Recent studies have focused on the utilization of 3D-printed critical materials for EESDs,which have demonstrated remarkable electrochemical performances,including high energy densities and rate capabilities,attributed to improved ion/electron transport abilities and fast kinetics.However,there is a lack of comprehensive reviews summarizing and discussing the recent advancements in the structural design and application of 3D-printed critical materials for EESDs,particularly rechargeable batteries.In this review,we primarily concentrate on the current progress in 3D printing(3DP)critical materials for emerging batteries.We commence by outlining the key characteristics of major 3DP methods employed for fabricating EESDs,encompassing design principles,materials selection,and optimization strategies.Subsequently,we summarize the recent advancements in 3D-printed critical materials(anode,cathode,electrolyte,separator,and current collector)for secondary batteries,including conventional Li-ion(LIBs),Na-ion(SIBs),K-ion(KIBs)batteries,as well as Li/Na/K/Zn metal batteries,Zn-air batteries,and Ni–Fe batteries.Within these sections,we discuss the 3DP precursor,design principles of 3D structures,and working mechanisms of the electrodes.Finally,we address the major challenges and potential applications in the development of 3D-printed critical materials for rechargeable batteries. 展开更多
关键词 additive manufacturing 3D printing rechargeable batteries electrochemical energy storage devices lithium-ion battery
下载PDF
Fundamentals,recent developments and prospects of lithium and non-lithium electrochemical rechargeable battery systems
9
作者 Maitri Patel Kuldeep Mishra +3 位作者 Ranjita Banerjee Jigar Chaudhari D.K.Kanchan Deepak Kumar 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期221-259,I0007,共40页
The present and future energy requirements of mankind can be fulfilled with sustained research and development efforts by global scientists.The purpose of this review paper is to provide an overview of the fundamental... The present and future energy requirements of mankind can be fulfilled with sustained research and development efforts by global scientists.The purpose of this review paper is to provide an overview of the fundamentals,recent advancements on Lithium and non-Lithium electrochemical rechargeable battery systems,and their future prospects.The initial part of this review paper is dedicated to the advancement and challenges faced by the conventional rechargeable batteries,such as lead-acid,Ni-Cd and Ni-MH batteries.The subsequent section of this review focuses on an in-depth analysis of two major categories of rechargeable batteries,namely lithium-based rechargeable battery systems and alternative non-Lithium rechargeable battery systems.The working principle,construction,and a few important research progress on Li-ion,Li-O_(2),Li-CO_(2) and Li-S batteries have been highlighted.The recent progress and challenges of the alternate batteries such as Na-ion,Na-S,Mg-ion,K-ion,Al-ion,Al-air,Zn-ion and Zn-air are also discussed in this review.The large gap between theoretical and practical electrochemical values for the alternate battery system must be filled by adopting a series of design architectures followed by modern instrumentation for developing next-generation batteries in a sustainable and efficient way. 展开更多
关键词 Conventional rechargeable batteries Li-ion batteries Li-S batteries Li-air battery Other than Lithium batteries Alternate battery systems
下载PDF
Aerophilic Triphase Interface Tuned by Carbon Dots Driving Durable and Flexible Rechargeable Zn‑Air Batteries
10
作者 Kuixing Ding Yu Ye +8 位作者 Jiugang Hu Liming Zhao Wei Jin Jia Luo Shan Cai Baicheng Weng Guoqiang Zou Hongshuai Hou Xiaobo Ji 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第2期238-258,共21页
Efficient bifunctional catalysts for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)are vital for rechargeable Zn-air batteries(ZABs).Herein,an oxygen-respirable sponge-like Co@C–O–Cs catalyst with ... Efficient bifunctional catalysts for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)are vital for rechargeable Zn-air batteries(ZABs).Herein,an oxygen-respirable sponge-like Co@C–O–Cs catalyst with oxygen-rich active sites was designed and constructed for both ORR and OER by a facile carbon dot-assisted strategy.The aerophilic triphase interface of Co@C–O–Cs cathode efficiently boosts oxygen diffusion and transfer.The theoretical calculations and experimental studies revealed that the Co–C–COC active sites can redistribute the local charge density and lower the reaction energy barrier.The Co@C–O–Cs catalyst displays superior bifunctional catalytic activities with a half-wave potential of 0.82 V for ORR and an ultralow overpotential of 294 mV at 10 mA cm^(−2) for OER.Moreover,it can drive the liquid ZABs with high peak power density(106.4 mW cm^(−2)),specific capacity(720.7 mAh g^(−1)),outstanding long-term cycle stability(over 750 cycles at 10 mA cm^(−2)),and exhibits excellent feasibility in flexible all-solid-state ZABs.These findings provide new insights into the rational design of efficient bifunctional oxygen catalysts in rechargeable metal-air batteries. 展开更多
关键词 Aerophilic triphase interface Oxygen-rich active sites O2 diffusion Bifunctional oxygen catalyst Flexible rechargeable Zn-air battery
下载PDF
CoSnO_(3)/C nanocubes with oxygen vacancy as high-capacity cathode materials for rechargeable aluminum batteries
11
作者 Shuainan Guo Mingquan Liu +3 位作者 Haoyi Yang Xin Feng Ying Bai Chuan Wu 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第3期883-892,共10页
Rechargeable aluminum batteries(RABs)are attractive cadidates for next-generation energy storage and conversion,due to the low cost and high safety of Al resources,and high capacity of metal Al based on the three-elec... Rechargeable aluminum batteries(RABs)are attractive cadidates for next-generation energy storage and conversion,due to the low cost and high safety of Al resources,and high capacity of metal Al based on the three-electrons reaction mechanism.However,the development of RABs is greatly limited,because of the lack of advanced cathode materials,and their complicated and unclear reaction mechanisms.Exploring the novel nanostructured transition metal and carbon composites is an effective route for obtaining ideal cathode materials.In this work,we synthesize porous CoSnO_(3)/C nanocubes with oxygen vacancies for utilizing as cathodes in RABs for the first time.The intrinsic structure stability of the mixed metal cations and carbon coating can improve the cycling performance of cathodes by regulating the internal strains of the electrodes during volume expansion.The nanocubes with porous structures contribute to fast mass transportation which improves the rate capability.In addition to this,abundant oxygen vacancies promote the adsorption affinity of cathodes,which improves storage capacity.As a result,the CoSnO_(3)/C cathodes display an excellent reversible capacity of 292.1 mAh g^(-1) at 0.1 A g^(-1),a good rate performance with 109 mAh g^(-1) that is maintained even at 1 A g^(-1) and the provided stable cycling behavior for 500 cycles.Besides,a mechanism of intercalation of Al^(3+)within CoSnO_(3)/C cathode is proposed for the electrochemical process.Overall,this work provides a step toward the development of advanced cathode materials for RABs by engineering novel nanostructured mixed transition-metal oxides with carbon composite and proposes novel insights into chemistry for RABs. 展开更多
关键词 rechargeable aluminum batteries Mixed transition-metal oxides CoSnO_(3)/C Cathode material Oxygen vacancy
下载PDF
Packet Scheduling in Rechargeable Wireless Sensor Networks under SINR Model
12
作者 Baogui Huang Jiguo Yu +2 位作者 Chunmei Ma Guangshun Li Anming Dong 《China Communications》 SCIE CSCD 2023年第3期286-301,共16页
Two packet scheduling algorithms for rechargeable sensor networks are proposed based on the signal to interference plus noise ratio model.They allocate different transmission slots to conflicting packets and overcome ... Two packet scheduling algorithms for rechargeable sensor networks are proposed based on the signal to interference plus noise ratio model.They allocate different transmission slots to conflicting packets and overcome the challenges caused by the fact that the channel state changes quickly and is uncontrollable.The first algorithm proposes a prioritybased framework for packet scheduling in rechargeable sensor networks.Every packet is assigned a priority related to the transmission delay and the remaining energy of rechargeable batteries,and the packets with higher priority are scheduled first.The second algorithm mainly focuses on the energy efficiency of batteries.The priorities are related to the transmission distance of packets,and the packets with short transmission distance are scheduled first.The sensors are equipped with low-capacity rechargeable batteries,and the harvest-store-use model is used.We consider imperfect batteries.That is,the battery capacity is limited,and battery energy leaks over time.The energy harvesting rate,energy retention rate and transmission power are known.Extensive simulation results indicate that the battery capacity has little effect on the packet scheduling delay.Therefore,the algorithms proposed in this paper are very suitable for wireless sensor networks with low-capacity batteries. 展开更多
关键词 packet scheduling physical interference model rechargeable sensor networks SINR model
下载PDF
In Situ Coupling Strategy for Anchoring Monodisperse Co_9S_8 Nanoparticles on S and N Dual?Doped Graphene as a Bifunctional Electrocatalyst for Rechargeable Zn–Air Battery 被引量:8
13
作者 Qi Shao Jiaqi Liu +4 位作者 Qiong Wu Qiang Li Heng?guo Wang Yanhui Li Qian Duan 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第1期64-77,共14页
An in situ coupling strategy to prepare Co_9S_8/S and N dual?doped graphene composite(Co_9S_8/NSG) has been proposed. The key point of this strategy is the function?oriented design of organic compounds. Herein, cobalt... An in situ coupling strategy to prepare Co_9S_8/S and N dual?doped graphene composite(Co_9S_8/NSG) has been proposed. The key point of this strategy is the function?oriented design of organic compounds. Herein, cobalt porphyrin derivatives with sulfo groups are employed as not only the coupling agents to form and anchor Co_9S_8 on the graphene in situ, but also the heteroatom?doped agent to generate S and N dual?doped graphene. The tight coupling of multiple active sites endows the composite materials with fast electrochemical kinetics and excellent stability for both oxygen reduction reaction(ORR) and oxygen evolution reaction(OER). The obtained electrocatalyst exhibits better activity parameter(ΔE = 0.82 V) and smaller Tafel slope(47.7 mV dec^(-1) for ORR and 69.2 mV dec^(-1) for OER) than commercially available Pt/C and RuO_2. Most importantly, as electrocatalyst for rechargeable Zn–air battery, Co_9S_8/NSG displays low charge–discharge voltage gap and outstanding long?term cycle stability over 138 h compared to Pt/C–RuO_2. To further broaden its application scope, a homemade all?solid?state Zn–air battery is also prepared, which displays good charge–discharge performance and cycle performance. The function?oriented design of N_4?metallomacrocycle derivatives might open new avenues to strategic construction of high?performance and long?life multifunctional electrocatalysts for wider electro?chemical energy applications. 展开更多
关键词 In situ COUPLING strategy Porphyrin derivate DOPED GRAPHENE Metal sulfide BIFUNCTIONAL ELECTROCATALYST rechargeable Zn–air battery
下载PDF
Mesoporous Graphene Hosts for Dendrite-Free Lithium Metal Anode in Working Rechargeable Batteries 被引量:9
14
作者 He Liu Xinbing Cheng +6 位作者 Rui Zhang Peng Shi Xin Shen Xiaoru Chen Tao Li Jiaqi Huang Qiang Zhang 《Transactions of Tianjin University》 EI CAS 2020年第2期127-134,共8页
Lithium(Li) metal anode has received extensive attentions due to its ultrahigh theoretical capacity and the most negative electrode potential. However, dendrite growth severely impedes the practical applications of th... Lithium(Li) metal anode has received extensive attentions due to its ultrahigh theoretical capacity and the most negative electrode potential. However, dendrite growth severely impedes the practical applications of the Li metal anode in rechargeable batteries. In this contribution, a mesoporous graphene with a high specific surface area was synthesized to host the Li metal anode. The mesoporous graphene host(MGH) has a high specific surface area(2090 m^2/g), which affords free space and an interconnected conductive pathway for Li plating and stripping, thus alleviating the volume variation and reducing the generation of dead Li during repeated cycles. More importantly, the high specific surface area of MGH efficiently reduces the local current density of the electrode, which favors a uniform Li nucleation and plating behavior, rendering a dendritefree deposition morphology at a low overpotential. These factors synergistically boost the Li utilization(90.1% vs. 70.1% for Cu foil) and life span(150 cycles vs. 100 cycles for Cu foil) with a low polarization of MGH electrode at an ultrahigh current of 15.0 mA/cm^2. The as-prepared MGH can provide fresh insights into the electrode design of the Li metal anode operating at high rates. 展开更多
关键词 LITHIUM metal anode MESOPOROUS GRAPHENE HOSTS Dendrite-free PLATING behavior Working rechargeable batteries Composite electrode
下载PDF
N-doped porous carbon hollow microspheres encapsulated with iron-based nanocomposites as advanced bifunctional catalysts for rechargeable Zn-air battery 被引量:7
15
作者 Ran Hao Jin-Tao Ren +3 位作者 Xian-Wei Lv Wei Li Yu-Ping Liu Zhong-Yong Yuan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第10期14-21,共8页
The design and development of low-cost,efficient,and stable bifunctional electrocatalysts for the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)are desirable for rechargeable metal-air batteries.In t... The design and development of low-cost,efficient,and stable bifunctional electrocatalysts for the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)are desirable for rechargeable metal-air batteries.In this work,N-doped porous hollow carbon spheres encapsulated with ultrafine Fe/Fe3O4 nanoparticles(FeOx@N-PHCS)were fabricated by impregnation and subsequent pyrolysis,using melamine-formaldehyde resin spheres as self-sacrifice templates and polydopamine as N and C sources.The sufficient adsorption of Fe3+on the polydopamine endowed the formation of Fe-Nx species upon high-temperature carbonization.The prepared FeOx@N-PHCS has advanced features of large specific surface area,porous hollow structure,high content of N dopants,sufficient Fe-Nx species and ultrafine FeOx nanoparticles.These features endow FeOx@N-PHCS with enhanced mass transfer and considerable active sites,leading to high activity and stability in catalyzing ORR and OER in alkaline electrolyte.Furthermore,the rechargeable Zn-air battery with FeOx@N-PHCS as air cathode catalyst exhibits a large peak power density,narrow charge-discharge potential gap and robust cycling stability,demonstrating the potential of the fabricated FeOx@N-PHCS as a promising electrode material for metal-air batteries.This new finding may open an avenue for rational design of bifunctional catalysts by integrating different active components within all-in-one catalyst for different electrochemical reactions. 展开更多
关键词 Bifunctional electrocatalysts rechargeable metal-air batteries N-doped porous carbon nanostructure Fe/Fe3O4 nanoparticles Fe-Nx species
下载PDF
Toward better electrode/electrolyte interfaces in the ionic-liquid-based rechargeable aluminum batteries 被引量:4
16
作者 Haoyi Yang Feng Wu +1 位作者 Ying Bai Chuan Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第6期98-102,I0004,共6页
The past decade has witnessed the germination of rechargeable aluminum batteries(RABs)with the colossal potential to enact as a device for the large scale energy storage and conversion.The Majority of investigations a... The past decade has witnessed the germination of rechargeable aluminum batteries(RABs)with the colossal potential to enact as a device for the large scale energy storage and conversion.The Majority of investigations are dedicated to the exploration of suitable cathode materials,while less is known about the electrode/electrolyte interfaces that determine the electrochemistry of batteries.In this perspective,we will highlight the significance of electrode/electrolyte interface for RABs,in overall kinetics and capacity retention.Emphasis will be laid on the complicated yet basic understandings of the phenomena at the interfaces,including the dendrite growth,surface Al2O3 and solid–electrolyte-interphase(SEI).And we will summarize the reported practice in effort to build better electrode/electrolyte interfaces in RAB.In the end,outlook regarding to the challenges,opportunities and directions is presented. 展开更多
关键词 ELECTROCHEMISTRY Interface rechargeable ALUMINUM battery
下载PDF
Progress in aqueous rechargeable batteries 被引量:6
17
作者 Jilei Liu Chaohe Xu +2 位作者 Zhen Chen Shibing Ni ZeXiang Shen 《Green Energy & Environment》 SCIE 2018年第1期20-41,共22页
Over the past decades, a series of aqueous rechargeable batteries(ARBs) were explored, investigated and demonstrated. Among them,aqueous rechargeable alkali-metal ion(Li^+Na^+, K^+) batteries, aqueous rechargeable-met... Over the past decades, a series of aqueous rechargeable batteries(ARBs) were explored, investigated and demonstrated. Among them,aqueous rechargeable alkali-metal ion(Li^+Na^+, K^+) batteries, aqueous rechargeable-metal ion(Zn^(2+),Mg^(2+), Ca^(2+), Al^(3+)) batteries and aqueous rechargeable hybrid batteries are standing out due to peculiar properties. In this review, we focus on the fundamental basics of these batteries, and discuss the scientific and/or technological achievements and challenges. By critically reviewing state-of-the-art technologies and the most promising results so far, we aim to analyze the benefits of ARBs and the critical issues to be addressed, and to promote better development of ARBs. 展开更多
关键词 Aqueous rechargeable batteries HYBRID Fundamental basics CHALLENGES
下载PDF
Flexible rechargeable Ni//Zn battery based on self-supported NiCo_2O_4 nanosheets with high power density and good cycling stability 被引量:5
18
作者 Haozhe Zhang Xinyue Zhang +5 位作者 Haodong Li Yifeng Zhang Yinxiang Zeng Yexiang Tong Peng Zhang Xihong Lu 《Green Energy & Environment》 SCIE 2018年第1期56-62,共7页
The overall electrochemical performances of Ni-Zn batteries are still far from satisfactory, specifically for rate performance and cycling stability Herein, we demonstrated a high-performance flexible Ni//Zn battery w... The overall electrochemical performances of Ni-Zn batteries are still far from satisfactory, specifically for rate performance and cycling stability Herein, we demonstrated a high-performance flexible Ni//Zn battery with outstanding durability and high power density based on selfsupported NiCo_2 O_4 nanosheets as cathode and Zn nanosheets as anode. This Ni//Zn battery is able to deliver a remarkable capacity of183.1 mAh g^(-1) and a good cycling performance(82.7% capacity retention after 3500 cycles). More importantly, this battery achieves an admirable power density of 49.0 kW kg^(-1) and energy density of 303.8 Wh kg^(-1), substantially higher than most recently reported batteries. With such excellent electrochemical performance, this battery will have great potential as an ultrafast power source in practical application. 展开更多
关键词 Ni//Zn battery FLEXIBLE NiCo2O4 rechargeable Long cycling life
下载PDF
The application of synchrotron X-ray techniques to the study ofrechargeable batteries 被引量:3
19
作者 Zhengliang Gong Yong Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第6期1566-1583,共18页
The increased use of rechargeable batteries in portable electronic devices and the continuous development of novel applications(e.g. transportation and large scale energy storage), have raised a strong demand for high... The increased use of rechargeable batteries in portable electronic devices and the continuous development of novel applications(e.g. transportation and large scale energy storage), have raised a strong demand for high performance batteries with increased energy density, cycle and calendar life, safety and lower costs. This triggers significant efforts to reveal the fundamental mechanism determining battery performance with the use of advanced analytical techniques. However, the inherently complex characteristics of battery systems make the mechanism analysis sophisticated and difficult. Synchrotron radiation is an advanced collimated light source with high intensity and tunable energies. It has particular advantages in electronic structure and geometric structure(both the short-range and long-range structure)analysis of materials on different length and time scales. In the past decades, synchrotron X-ray techniques have been widely used to understand the fundamental mechanism and guide the technological optimization of batteries. In particular, in situ and operando techniques with high spatial and temporal resolution, enable the nondestructive, real time dynamic investigation of the electrochemical reaction,and lead to significant deep insights into the battery operation mechanism.This review gives a brief introduction of the application of synchrotron X-ray techniques to the investigation of battery systems. The five widely implicated techniques, including X-ray diffraction(XRD), Pair Distribution Function(PDF), Hard and Soft X-ray absorption spectroscopy(XAS) and X-ray photoelectron spectroscopy(XPS) will be reviewed, with the emphasis on their in situ studies of battery systems during cycling. 展开更多
关键词 rechargeable battery Synchrotron X-ray techniques X-ray diffraction X-ray absorption spectroscopy Pair Distribution Function X-ray photoelectron spectroscopy
下载PDF
Ultrasonic Plasma Engineering Toward Facile Synthesis of Single-Atom M-N4/N-Doped Carbon(M=Fe,Co) as Superior Oxygen Electrocatalyst in Rechargeable Zinc-Air Batteries 被引量:4
20
作者 Kai Chen Seonghee Kim +5 位作者 Minyeong Je Heechae Choi Zhicong Shi Nikola Vladimir Kwang Ho Kim Oi Lun Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第4期76-95,共20页
As bifunctional oxygen evolution/reduction electrocatalysts,transition-metal-based single-atom-doped nitrogen-carbon(NC)matrices are promising successors of the corresponding noblemetal-based catalysts,offering the ad... As bifunctional oxygen evolution/reduction electrocatalysts,transition-metal-based single-atom-doped nitrogen-carbon(NC)matrices are promising successors of the corresponding noblemetal-based catalysts,offering the advantages of ultrahigh atom utilization effciency and surface active energy.However,the fabrication of such matrices(e.g.,well-dispersed single-atom-doped M-N4/NCs)often requires numerous steps and tedious processes.Herein,ultrasonic plasma engineering allows direct carbonization in a precursor solution containing metal phthalocyanine and aniline.When combining with the dispersion effect of ultrasonic waves,we successfully fabricated uniform single-atom M-N4(M=Fe,Co)carbon catalysts with a production rate as high as 10 mg min-1.The Co-N4/NC presented a bifunctional potential drop ofΔE=0.79 V,outperforming the benchmark Pt/C-Ru/C catalyst(ΔE=0.88 V)at the same catalyst loading.Theoretical calculations revealed that Co-N4 was the major active site with superior O2 adsorption-desorption mechanisms.In a practical Zn-air battery test,the air electrode coated with Co-N4/NC exhibited a specific capacity(762.8 mAh g(-1))and power density(101.62 mW cm^(-2)),exceeding those of Pt/C-Ru/C(700.8 mAh g^(-1) and 89.16 mW cm^(-2),respectively)at the same catalyst loading.Moreover,for Co-N4/NC,the potential difference increased from 1.16 to 1.47 V after 100 charge-discharge cycles.The proposed innovative and scalable strategy was concluded to be well suited for the fabrication of single-atom-doped carbons as promising bifunctional oxygen evolution/reduction electrocatalysts for metal-air batteries. 展开更多
关键词 Single-atom-doped M-N4/NC catalyst Plasma engineering ORR/OER bifunctional activity DFT calculation rechargeable Zn-air battery
下载PDF
上一页 1 2 131 下一页 到第
使用帮助 返回顶部