In this paper, we derive the continuous dependence on the terminal condition of solutions to nonlinear reflected backward stochastic differential equations involving the subdifferential operator convex function under ...In this paper, we derive the continuous dependence on the terminal condition of solutions to nonlinear reflected backward stochastic differential equations involving the subdifferential operator convex function under non-Lipschitz of a lower semi-continuous, proper and condition by means of the corollary of Bihari inequality.展开更多
In this paper, we study the reflected solutions of one-dimensional backward stochastic differential equations driven by G-Brownian motion. The reflection keeps the solution above a given stochastic process. In order t...In this paper, we study the reflected solutions of one-dimensional backward stochastic differential equations driven by G-Brownian motion. The reflection keeps the solution above a given stochastic process. In order to derive the uniqueness of reflected G-BSDEs, we apply a "martingale condition" instead of the Skorohod condition. Similar to the classical case, we prove the existence by approximation via penalization. We then give some applications including a generalized Feynman-Kac formula of an obstacle problem for fully nonlinear partial differential equation and option pricing of American types under volatility uncertainty.展开更多
In this paper, we study one-dimensional reflected backward doubly stochastic differential equations (RBDSDEs) with one continuous barrier and discontinuous (left or right continuous) genera- tor. We obtain an exis...In this paper, we study one-dimensional reflected backward doubly stochastic differential equations (RBDSDEs) with one continuous barrier and discontinuous (left or right continuous) genera- tor. We obtain an existence theorem and a comparison theorem for solutions of the class of RBDSDEs.展开更多
In this paper we first investigate zero-sum two-player stochastic differential games with reflection, with the help of theory of Reflected Backward Stochastic Differential Equations (RBSDEs). We will establish the d...In this paper we first investigate zero-sum two-player stochastic differential games with reflection, with the help of theory of Reflected Backward Stochastic Differential Equations (RBSDEs). We will establish the dynamic programming principle for the upper and the lower value functions of this kind of stochastic differential games with reflection in a straightforward way. Then the upper and the lower value functions are proved to be the unique viscosity solutions to the associated upper and the lower Hamilton-Jacobi-Bettman-Isaacs equations with obstacles, respectively. The method differs significantly from those used for control problems with reflection, with new techniques developed of interest on its own. Further, we also prove a new estimate for RBSDEs being sharper than that in the paper of E1 Karoui, Kapoudjian, Pardoux, Peng and Quenez (1997), which turns out to be very useful because it allows us to estimate the LP-distance of the solutions of two different RBSDEs by the p-th power of the distance of the initial values of the driving forward equations. We also show that the unique viscosity solution to the approximating Isaacs equation constructed by the penalization method converges to the viscosity solution of the Isaacs equation with obstacle.展开更多
We prove several existence and uniqueness results for Lp (p 〉 1) solutions of reflected BSDEs with continuous barriers and generators satisfying a one-sided Osgood condition together with a general growth condition...We prove several existence and uniqueness results for Lp (p 〉 1) solutions of reflected BSDEs with continuous barriers and generators satisfying a one-sided Osgood condition together with a general growth condition in y and a uniform continuity condition or a linear growth condition in z. A necessary and sufficient condition with respect to the growth of barrier is also explored to ensure the existence of a solution. And, we show that the solutions may be approximated by the penalization method and by some sequences of solutions of reflected BSDEs. These results are obtained due to the development of those existing ideas and methods together with the application of new ideas and techniques, and they unify and improve some known works.展开更多
In this short note we consider reflected backward stochastic differential equations(RBSDEs)with a Lipschitz driver and barrier processes that are optional and right lower semicontinuous.In this case,the barrier is rep...In this short note we consider reflected backward stochastic differential equations(RBSDEs)with a Lipschitz driver and barrier processes that are optional and right lower semicontinuous.In this case,the barrier is represented as a nondecreasing limit of right continuous with left limit(RCLL)barriers.We combine some well-known existence results for RCLL barriers with comparison arguments for the control process to construct solutions.Finally,we highlight the connection of these RBSDEs with standard RCLL BSDEs.展开更多
基金the Key Science and Technology Project of Ministry of Education (207047)The Research Project for Younger Teacher of Anhui Normal University (no.2006xqn49)+2 种基金The Special Project Grants of Anhui Normal University (2006xzx08)The Project Grants for Ph.D of Anhui Normal UniversityThe Teaching Research Project of Anhui Normal University
文摘In this paper, we derive the continuous dependence on the terminal condition of solutions to nonlinear reflected backward stochastic differential equations involving the subdifferential operator convex function under non-Lipschitz of a lower semi-continuous, proper and condition by means of the corollary of Bihari inequality.
基金supported by the Tian Yuan Projection of the National Natural Science Foundation of China(Grant Nos.11526205 and 11626247)the German Research Foundation(DFG)via CRC1283the Lebesgue Center of Mathematics(“Investissements d’aveni”Program)(Grant No.ANR-11-LABX-0020-01)
文摘In this paper, we study the reflected solutions of one-dimensional backward stochastic differential equations driven by G-Brownian motion. The reflection keeps the solution above a given stochastic process. In order to derive the uniqueness of reflected G-BSDEs, we apply a "martingale condition" instead of the Skorohod condition. Similar to the classical case, we prove the existence by approximation via penalization. We then give some applications including a generalized Feynman-Kac formula of an obstacle problem for fully nonlinear partial differential equation and option pricing of American types under volatility uncertainty.
基金Supported by Chinese Natural Science Foundation(Grant No.11271093)the Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20090002110047)
文摘In this paper, we study one-dimensional reflected backward doubly stochastic differential equations (RBDSDEs) with one continuous barrier and discontinuous (left or right continuous) genera- tor. We obtain an existence theorem and a comparison theorem for solutions of the class of RBDSDEs.
基金supported by the Agence Nationale de la Recherche (France), reference ANR-10-BLAN 0112the Marie Curie ITN "Controlled Systems", call: FP7-PEOPLE-2007-1-1-ITN, no. 213841-2+3 种基金supported by the National Natural Science Foundation of China (No. 10701050, 11071144)National Basic Research Program of China (973 Program) (No. 2007CB814904)Shandong Province (No. Q2007A04),Independent Innovation Foundation of Shandong Universitythe Project-sponsored by SRF for ROCS, SEM
文摘In this paper we first investigate zero-sum two-player stochastic differential games with reflection, with the help of theory of Reflected Backward Stochastic Differential Equations (RBSDEs). We will establish the dynamic programming principle for the upper and the lower value functions of this kind of stochastic differential games with reflection in a straightforward way. Then the upper and the lower value functions are proved to be the unique viscosity solutions to the associated upper and the lower Hamilton-Jacobi-Bettman-Isaacs equations with obstacles, respectively. The method differs significantly from those used for control problems with reflection, with new techniques developed of interest on its own. Further, we also prove a new estimate for RBSDEs being sharper than that in the paper of E1 Karoui, Kapoudjian, Pardoux, Peng and Quenez (1997), which turns out to be very useful because it allows us to estimate the LP-distance of the solutions of two different RBSDEs by the p-th power of the distance of the initial values of the driving forward equations. We also show that the unique viscosity solution to the approximating Isaacs equation constructed by the penalization method converges to the viscosity solution of the Isaacs equation with obstacle.
基金Supported by National Natural Science Foundation of China(Grant No.11371362)the Fundamental Research Funds for the Central Universities(Grant No.2012QNA36)
文摘We prove several existence and uniqueness results for Lp (p 〉 1) solutions of reflected BSDEs with continuous barriers and generators satisfying a one-sided Osgood condition together with a general growth condition in y and a uniform continuity condition or a linear growth condition in z. A necessary and sufficient condition with respect to the growth of barrier is also explored to ensure the existence of a solution. And, we show that the solutions may be approximated by the penalization method and by some sequences of solutions of reflected BSDEs. These results are obtained due to the development of those existing ideas and methods together with the application of new ideas and techniques, and they unify and improve some known works.
文摘In this short note we consider reflected backward stochastic differential equations(RBSDEs)with a Lipschitz driver and barrier processes that are optional and right lower semicontinuous.In this case,the barrier is represented as a nondecreasing limit of right continuous with left limit(RCLL)barriers.We combine some well-known existence results for RCLL barriers with comparison arguments for the control process to construct solutions.Finally,we highlight the connection of these RBSDEs with standard RCLL BSDEs.