North African countries generally have strategic demands for energy transformation and sustainable development.Renewable energy development is important to achieve this goal.Considering three typical types of renewabl...North African countries generally have strategic demands for energy transformation and sustainable development.Renewable energy development is important to achieve this goal.Considering three typical types of renewable energies—wind,photovoltaic(PV),and concentrating solar power(CSP)—an optimal planning model is established to minimize construction costs and power curtailment losses.The levelized cost of electricity is used as an index for assessing economic feasibility.In this study,wind and PV,wind/PV/CSP,and transnational interconnection modes are designed for Morocco,Egypt,and Tunisia.The installed capacities of renewable energy power generation are planned through the time sequence production simulation method for each country.The results show that renewable energy combined with power generation,including the CSP mode,can improve reliability of the power supply and reduce the power curtailment rate.The transnational interconnection mode can help realize mutual benefits of renewable energy power,while the apportionment of electricity prices and trading mechanisms are very important and are related to economic feasibility;thus,this mode is important for the future development of renewable energy in North Africa.展开更多
In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for n...In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for network optimization.This study introduces an innovative solution,the Gaussian Bare-Bones Levy Cheetah Optimizer(GBBLCO),addressing OPF challenges in power generation systems with stochastic RESs.The primary objective is to minimize the total operating costs of RESs,considering four functions:overall operating costs,voltage deviation management,emissions reduction,voltage stability index(VSI)and power loss mitigation.Additionally,a carbon tax is included in the objective function to reduce carbon emissions.Thorough scrutiny,using modified IEEE 30-bus and IEEE 118-bus systems,validates GBBLCO’s superior performance in achieving optimal solutions.Simulation results demonstrate GBBLCO’s efficacy in six optimization scenarios:total cost with valve point effects,total cost with emission and carbon tax,total cost with prohibited operating zones,active power loss optimization,voltage deviation optimization and enhancing voltage stability index(VSI).GBBLCO outperforms conventional techniques in each scenario,showcasing rapid convergence and superior solution quality.Notably,GBBLCO navigates complexities introduced by valve point effects,adapts to environmental constraints,optimizes costs while considering prohibited operating zones,minimizes active power losses,and optimizes voltage deviation by enhancing the voltage stability index(VSI)effectively.This research significantly contributes to advancing OPF,emphasizing GBBLCO’s improved global search capabilities and ability to address challenges related to local minima.GBBLCO emerges as a versatile and robust optimization tool for diverse challenges in power systems,offering a promising solution for the evolving needs of renewable energy-integrated power grids.展开更多
With the large-scale development and utilization of renewable energy,industrial flexible loads,as a kind of loadside resource with strong regulation ability,provide new opportunities for the research on renewable ener...With the large-scale development and utilization of renewable energy,industrial flexible loads,as a kind of loadside resource with strong regulation ability,provide new opportunities for the research on renewable energy consumption problem in power systems.This paper proposes a two-layer active power optimization model based on industrial flexible loads for power grid partitioning,aiming at improving the line over-limit problem caused by renewable energy consumption in power grids with high proportion of renewable energy,and achieving the safe,stable and economical operation of power grids.Firstly,according to the evaluation index of renewable energy consumption characteristics of line active power,the power grid is divided into several partitions,and the interzone tie lines are taken as the optimization objects.Then,on the basis of partitioning,a two-layer active power optimization model considering the power constraints of industrial flexible loads is established.The upper-layer model optimizes the planned power of the inter-zone tie lines under the constraint of the minimum peak-valley difference within a day;the lower-layer model optimizes the regional source-load dispatching plan of each resource in each partition under the constraint of theminimumoperation cost of the partition,so as to reduce the line overlimit phenomenon caused by renewable energy consumption and save the electricity cost of industrial flexible loads.Finally,through simulation experiments,it is verified that the proposed model can effectively mobilize industrial flexible loads to participate in power grid operation and improve the economic stability of power grid.展开更多
Against the backdrop of global energy shortages and increasingly severe environmental pollution,renewable energy is gradually becoming a significant direction for future energy development.Power electronics converters...Against the backdrop of global energy shortages and increasingly severe environmental pollution,renewable energy is gradually becoming a significant direction for future energy development.Power electronics converters,as the core technology for energy conversion and control,play a crucial role in enhancing the efficiency and stability of renewable energy systems.This paper explores the basic principles and functions of power electronics converters and their specific applications in photovoltaic power generation,wind power generation,and energy storage systems.Additionally,it analyzes the current innovations in high-efficiency energy conversion,multilevel conversion technology,and the application of new materials and devices.By studying these technologies,the aim is to promote the widespread application of power electronics converters in renewable energy systems and provide theoretical and technical support for achieving sustainable energy development.展开更多
Along with the increasing integration of renewable energy generation in AC-DC power networks,investigating the dynamic behaviors of this complex system with a proper equivalent model is significant.This paper presents...Along with the increasing integration of renewable energy generation in AC-DC power networks,investigating the dynamic behaviors of this complex system with a proper equivalent model is significant.This paper presents an equivalent modeling method for the AC-DC power networks with doubly-fed induction generator(DFIG)based wind farms to decrease the simulation scale and computational burden.For the AC-DC power networks,the equivalent modeling strategy in accordance with the physical structure simplification is stated.Regarding the DFIG-based wind farms,the equivalent modeling based on the sequential identification of multi-machine parameters using the improved chaotic cuckoo search algorithm(ICCSA)is conducted.In light of the MATLAB simulation platform,a two-zone four-DC interconnected power grid with wind farms is built to check the efficacy of the proposed equivalentmodelingmethod.Fromthe simulation analyses and comparative validation in different algorithms and cases,the proposed method can precisely reflect the steady and dynamic performance of the demonstrated system under N-1 and N-2 fault scenarios,and it can efficiently achieve the parameter identification of the wind farms and fulfill the equivalent modeling.Consequently,the proposed approach’s effectiveness and suitability are confirmed.展开更多
This study presents a comprehensive impact analysis of the rotor angle stability of a proposed international connection between the Philippines and Sabah,Malaysia,as part of the Association of Southeast Asian Nations(...This study presents a comprehensive impact analysis of the rotor angle stability of a proposed international connection between the Philippines and Sabah,Malaysia,as part of the Association of Southeast Asian Nations(ASEAN)Power Grid.This study focuses on modeling and evaluating the dynamic performance of the interconnected system,considering the high penetration of renewable sources.Power flow,small signal stability,and transient stability analyses were conducted to assess the ability of the proposed linked power system models to withstand small and large disturbances,utilizing the Power Systems Analysis Toolbox(PSAT)software in MATLAB.All components used in the model are documented in the PSAT library.Currently,there is a lack of publicly available studies regarding the implementation of this specific system.Additionally,the study investigates the behavior of a system with a high penetration of renewable energy sources.Based on the findings,this study concludes that a system is generally stable when interconnection is realized,given its appropriate location and dynamic component parameters.Furthermore,the critical eigenvalues of the system also exhibited improvement as the renewable energy sources were augmented.展开更多
The nature of variable and uncertainty from renewable energy sources (RESs) makes them challenging to be integrated into the main grid separately. A Virtual Power Plant (VPP) is proposed to aggregate the capacities of...The nature of variable and uncertainty from renewable energy sources (RESs) makes them challenging to be integrated into the main grid separately. A Virtual Power Plant (VPP) is proposed to aggregate the capacities of RESs and facilitate the integration and management in a decentralized manner. In this paper, a novel framework for optimal energy management of VPP considering key features such as handling uncertainties with RESs, reducing operating costs and regulating system voltage levels is proposed, and a two-stage stochastic simulation is formulated to address the uncertainties of RESs generation and electricity prices. Simulation result show that the framework can benefit from ensuring the energy balance and system security, as well as reducing the operation costs.展开更多
On March 19, the construction of a 10-MW photovoltaic power plant and a 1 000-kW new type geothermal power generation project were started by Guodian Longyuan Group in Yanbajing Town, Dangxiong County of Tibet.
Recently,renewable energy(RE)has become popular due to its benefits,such as being inexpensive,low-carbon,ecologically friendly,steady,and reliable.The RE sources are gradually combined with non-renewable energy(NRE)so...Recently,renewable energy(RE)has become popular due to its benefits,such as being inexpensive,low-carbon,ecologically friendly,steady,and reliable.The RE sources are gradually combined with non-renewable energy(NRE)sources into electric grids to satisfy energy demands.Since energy utilization is highly related to national energy policy,energy prediction using artificial intelligence(AI)and deep learning(DL)based models can be employed for energy prediction on RE and NRE power resources.Predicting energy consumption of RE and NRE sources using effective models becomes necessary.With this motivation,this study presents a new multimodal fusionbased predictive tool for energy consumption prediction(MDLFM-ECP)of RE and NRE power sources.Actual data may influence the prediction performance of the results in prediction approaches.The proposed MDLFMECP technique involves pre-processing,fusion-based prediction,and hyperparameter optimization.In addition,the MDLFM-ECP technique involves the fusion of four deep learning(DL)models,namely long short-termmemory(LSTM),bidirectional LSTM(Bi-LSTM),deep belief network(DBN),and gated recurrent unit(GRU).Moreover,the chaotic cat swarm optimization(CCSO)algorithm is applied to tune the hyperparameters of the DL models.The design of the CCSO algorithm for optimal hyperparameter tuning of the DL models,showing the novelty of the work.A series of simulations took place to validate the superior performance of the proposed method,and the simulation outcome emphasized the improved results of the MDLFM-ECP technique over the recent approaches with minimum overall mean absolute percentage error of 3.58%.展开更多
With the development of carbon electricity,achieving a low-carbon economy has become a prevailing and inevitable trend.Improving low-carbon expansion generation planning is critical for carbon emission mitigation and ...With the development of carbon electricity,achieving a low-carbon economy has become a prevailing and inevitable trend.Improving low-carbon expansion generation planning is critical for carbon emission mitigation and a lowcarbon economy.In this paper,a two-layer low-carbon expansion generation planning approach considering the uncertainty of renewable energy at multiple time scales is proposed.First,renewable energy sequences considering the uncertainty in multiple time scales are generated based on the Copula function and the probability distribution of renewable energy.Second,a two-layer generation planning model considering carbon trading and carbon capture technology is established.Specifically,the upper layer model optimizes the investment decision considering the uncertainty at a monthly scale,and the lower layer one optimizes the scheduling considering the peak shaving at an hourly scale and the flexibility at a 15-minute scale.Finally,the results of different influence factors on low-carbon generation expansion planning are compared in a provincial power grid,which demonstrate the effectiveness of the proposed model.展开更多
An industrial park is one of the typical en ergy con sumption schemes in power systems owing to the heavy in dustrial loads and their abilities to resp ond to electricity price cha nges.Therefore,en ergy in tegrati on...An industrial park is one of the typical en ergy con sumption schemes in power systems owing to the heavy in dustrial loads and their abilities to resp ond to electricity price cha nges.Therefore,en ergy in tegrati on in the industrial sector is significant.Accordingly,the concept of industrial virtual power plant(IVPP)has been proposed to deal with such problems.This study demonstrates an IVPP model to man age resources in an eco-i ndustrial park,including en ergy storage systems,dema nd resp onse(DR)resources,and distributed energies.In addition,fuzzy theory is used to cha nge the deterministic system constraints to fuzzy parameters,considering the uncertainty of renewable energy,and fuzzy chance constraints are then set based on the credibility theory.By maximizi ng the daily ben efits of the IVPP owners in day-ahead markets,DR and energy storage systems can be scheduled economically.Therefore,the energy between the grid and IVPP can flow in both directions:the surplus renewable electricity of IVPP can be sold in the market;when the electricity gen erated in side IVPP is not enough for its use,IVPP can also purchase power through the market.Case studies based on three win d-level scenarios dem on strate the efficie nt syn ergies betwee n IVPP resources.The validatio n results indicate that IVPP can optimize the supply and demand resources in in dustrial parks,thereby decarbonizing the power systems.展开更多
To address the issue of climate change caused by the use of polluting, non-renewable energy sources, the use of renewable energy has gained momentum worldwide. Consequently, the increased integration of renewable ener...To address the issue of climate change caused by the use of polluting, non-renewable energy sources, the use of renewable energy has gained momentum worldwide. Consequently, the increased integration of renewable energy sources into power grids has necessitated the inclusion of flexible capacities in the power systems to solve problems of intermittent and fluctuating characteristics associated with renewable generation outputs. In this work, we study the regulating cost of a power system with high renewable penetration using an improved time-series system production simulation analysis method. The operational cost of the system is considered as the objective function. Three different methods to increase regulating capacities, including using interconnection lines, building additional flexible power capacities, and retrofitting existing thermal power plants, are adopted and simulated to compare the costs of accommodating renewable energy in the system in these cases. Our results indicate that increasing the flexibility of thermal power plants and developing crossregional connection lines are cost-effective methods of increasing renewable energy consumption.展开更多
Since China is being faced with the pressure of energy shortage and environmental conservation, the power industry in China has to actively develop the renewable energy for electricity generation while raising the uti...Since China is being faced with the pressure of energy shortage and environmental conservation, the power industry in China has to actively develop the renewable energy for electricity generation while raising the utilization efficiency of conventional energy. In view of such facts, China Guodian Corporation decided on a development strategy of giving priority to green power, such as wind power. Based on the national planning of wind power development, the corporation set out its own target of installing wind power capacity of 1500 MW by the end of 2010, and is adopting appropriate measures including promoting the localization of wind turbines and developing hydropower, thermal power and wind power simultaneously. Moreover, it put some relevant suggestions.展开更多
New method for determination of optimal placement and value of installed capacity of renewable source of energy (RES) by the criterion of minimum losses of active power, that allows taking into consideration the depen...New method for determination of optimal placement and value of installed capacity of renewable source of energy (RES) by the criterion of minimum losses of active power, that allows taking into consideration the dependence of RES on natural conditions of region, schedule of energy supply, parameters and configuration of distribution network is suggested in the paper. Results of computations of test scheme confirm the efficiency of the proposed method and its simplicity as compared with the methods considered in literature sources.展开更多
This paper comes up with a concept of synergetic advanced dispatch in order to deal with the ever-increasing uncertainty in power grid: Decision is made with respecting to AGC units and active load on the basis of syn...This paper comes up with a concept of synergetic advanced dispatch in order to deal with the ever-increasing uncertainty in power grid: Decision is made with respecting to AGC units and active load on the basis of synergetic unit combination such that active load’s advantages in regulation speed is put to full use in achieving efficient cooperation with renewable energy power. Meanwhile, factoring in allowable frequency variation range during decision-making may help to reduce AGC units’ regulation load and improve power grid's capacity of accommodating renewable energy power. Calculation example analysis suggested that the model and technique presented in this paper is capable of efficient coordination between active loads and renewable energy power, delivering friendly transition with day-ahead dispatch and AVC control.展开更多
Necessity of electricity access in remote area is the main reason for expanding decentralized energy system such as stand-alone power systems. The best electrical power supply must provide a constant magnitude and fre...Necessity of electricity access in remote area is the main reason for expanding decentralized energy system such as stand-alone power systems. The best electrical power supply must provide a constant magnitude and frequency voltage. Therefore, good power quality is an important factor for the reliable operation of electrical loads in a power system. However, the current drawn by most of electronic devices and non-linear loads are non-sinusoidal, which can result in a poor power quality, especially in off-grid power systems. Poor power quality is characterized by electrical disturbances such as transients, sags, swells, harmonics and even interruptions in the power supply. Off-grid power systems worldwide often struggle with system failures and equipment damage due to poor power quality. In this paper, MAT- LAB/Simulink is used to model and analyses power quality in an off-grid renewable energy system. The results show high voltage transient when the inductive loads were switched OFF. The voltage and current harmonics are also determined and compared for various types of loads.展开更多
Recently, introduction of renewable energy sources like wind power generation and photovoltaic power generation has been increasing from the viewpoint of environmental problems. However, renewable energy power supplie...Recently, introduction of renewable energy sources like wind power generation and photovoltaic power generation has been increasing from the viewpoint of environmental problems. However, renewable energy power supplies have unstable output due to the influence of weather conditions such as wind speed variations, which may cause fluctuations of voltage and frequency in the power system. This paper proposes fuzzy PD based virtual inertia control system to decrease frequency fluctuations in power system caused by fluctuating output of renewable energy sources. The proposed new method is based on the coordinated control of HVDC interconnection line and battery, and energy balancing control is also incorporated in it. Finally, it is concluded that the proposed system is very effective for suppressing the frequency fluctuations of the power system due to the large-scale wind power generation and solar power generation and also for keeping the energy balancing in the HVDC transmission line.展开更多
The utilization of renewable energy in sending-end power grids is increasing rapidly,which brings difficulties to voltage control.This paper proposes a coordinated voltage control strategy based on model predictive co...The utilization of renewable energy in sending-end power grids is increasing rapidly,which brings difficulties to voltage control.This paper proposes a coordinated voltage control strategy based on model predictive control(MPC)for the renewable energy power plants of wind and solar power connected to a weak sending-end power grid(WSPG).Wind turbine generators(WTGs),photovoltaic arrays(PVAs),and a static synchronous compensator are coordinated to maintain voltage within a feasible range during operation.This results in the full use of the reactive power capability of WTGs and PVAs.In addition,the impact of the active power outputs of WTGs and PVAs on voltage control are considered because of the high R/X ratio of a collector system.An analytical method is used for calculating sensitivity coefficients to improve computation efficiency.A renewable energy power plant with 80 WTGs and 20 PVAs connected to a WSPG is used to verify the proposed voltage control strategy.Case studies show that the coordinated voltage control strategy can achieve good voltage control performance,which improves the voltage quality of the entire power plant.展开更多
It is difficult for renewable energy resources to provide constant power with excellent quality for the grid system. This serial research proposes a power stabilization system with a pumped storage to guarantee power ...It is difficult for renewable energy resources to provide constant power with excellent quality for the grid system. This serial research proposes a power stabilization system with a pumped storage to guarantee power quality and capacity, while the outputs from the energy resources are at unstable and/or fluctuating conditions. The power stabilization system with a counter-rotating type pump-turbine unit was prepared and operated at the pumping and the turbine modes. The unit composed of the tandem impellers/runners connected to the inner and the outer armatures of the unique motor/generator. The experiments have verified that this type pump-turbine unit is reasonably effective to stabilize momentarily/instantaneously the fluctuating power from the renewable energy resources.展开更多
This paper focused on generation scheduling problem with consideration of wind, solar and PHES (pumped hydro energy storage) system. Wind, solar and PHES are being considered in the NEPS (northeast power system) o...This paper focused on generation scheduling problem with consideration of wind, solar and PHES (pumped hydro energy storage) system. Wind, solar and PHES are being considered in the NEPS (northeast power system) of Afghanistan to schedule all units power output so as to minimize the total operation cost of thermal units plus aggregate imported power tariffs during the scheduling horizon, subject to the system and unit operation constraints. Apart from determining the optimal output power of each unit, this research also involves in deciding the on/off status of thermal units. In order to find the optimal values of the variables, GA (genetic algorithm) is proposed. The algorithm performs efficiently in various sized thermal power system with equivalent wind, solar and PHES and can produce a high-quality solution. Simulation results reveal that with wind, solar and PHES the system is the most-cost effective than the other combinations.展开更多
基金Supported by the Science and Technology Foundation of SGCC(Large-scale development and utilization mode of solar energy in North Africa under the condition of transcontinental grid interconnection:NY71-18-004)the Science and Technology Foundation of GEI(Research on Large-scale Solar Energy Development in West-Asia and North-Africa:NYN11201805034)
文摘North African countries generally have strategic demands for energy transformation and sustainable development.Renewable energy development is important to achieve this goal.Considering three typical types of renewable energies—wind,photovoltaic(PV),and concentrating solar power(CSP)—an optimal planning model is established to minimize construction costs and power curtailment losses.The levelized cost of electricity is used as an index for assessing economic feasibility.In this study,wind and PV,wind/PV/CSP,and transnational interconnection modes are designed for Morocco,Egypt,and Tunisia.The installed capacities of renewable energy power generation are planned through the time sequence production simulation method for each country.The results show that renewable energy combined with power generation,including the CSP mode,can improve reliability of the power supply and reduce the power curtailment rate.The transnational interconnection mode can help realize mutual benefits of renewable energy power,while the apportionment of electricity prices and trading mechanisms are very important and are related to economic feasibility;thus,this mode is important for the future development of renewable energy in North Africa.
基金supported by the Deanship of Postgraduate Studies and Scientific Research at Majmaah University in Saudi Arabia under Project Number(ICR-2024-1002).
文摘In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for network optimization.This study introduces an innovative solution,the Gaussian Bare-Bones Levy Cheetah Optimizer(GBBLCO),addressing OPF challenges in power generation systems with stochastic RESs.The primary objective is to minimize the total operating costs of RESs,considering four functions:overall operating costs,voltage deviation management,emissions reduction,voltage stability index(VSI)and power loss mitigation.Additionally,a carbon tax is included in the objective function to reduce carbon emissions.Thorough scrutiny,using modified IEEE 30-bus and IEEE 118-bus systems,validates GBBLCO’s superior performance in achieving optimal solutions.Simulation results demonstrate GBBLCO’s efficacy in six optimization scenarios:total cost with valve point effects,total cost with emission and carbon tax,total cost with prohibited operating zones,active power loss optimization,voltage deviation optimization and enhancing voltage stability index(VSI).GBBLCO outperforms conventional techniques in each scenario,showcasing rapid convergence and superior solution quality.Notably,GBBLCO navigates complexities introduced by valve point effects,adapts to environmental constraints,optimizes costs while considering prohibited operating zones,minimizes active power losses,and optimizes voltage deviation by enhancing the voltage stability index(VSI)effectively.This research significantly contributes to advancing OPF,emphasizing GBBLCO’s improved global search capabilities and ability to address challenges related to local minima.GBBLCO emerges as a versatile and robust optimization tool for diverse challenges in power systems,offering a promising solution for the evolving needs of renewable energy-integrated power grids.
基金supported by State Grid Corporation of China Project“Research and Application of Key Technologies for Active Power Control in Regional Power Grid with High Penetration of Distributed Renewable Generation”(5108-202316044A-1-1-ZN).
文摘With the large-scale development and utilization of renewable energy,industrial flexible loads,as a kind of loadside resource with strong regulation ability,provide new opportunities for the research on renewable energy consumption problem in power systems.This paper proposes a two-layer active power optimization model based on industrial flexible loads for power grid partitioning,aiming at improving the line over-limit problem caused by renewable energy consumption in power grids with high proportion of renewable energy,and achieving the safe,stable and economical operation of power grids.Firstly,according to the evaluation index of renewable energy consumption characteristics of line active power,the power grid is divided into several partitions,and the interzone tie lines are taken as the optimization objects.Then,on the basis of partitioning,a two-layer active power optimization model considering the power constraints of industrial flexible loads is established.The upper-layer model optimizes the planned power of the inter-zone tie lines under the constraint of the minimum peak-valley difference within a day;the lower-layer model optimizes the regional source-load dispatching plan of each resource in each partition under the constraint of theminimumoperation cost of the partition,so as to reduce the line overlimit phenomenon caused by renewable energy consumption and save the electricity cost of industrial flexible loads.Finally,through simulation experiments,it is verified that the proposed model can effectively mobilize industrial flexible loads to participate in power grid operation and improve the economic stability of power grid.
文摘Against the backdrop of global energy shortages and increasingly severe environmental pollution,renewable energy is gradually becoming a significant direction for future energy development.Power electronics converters,as the core technology for energy conversion and control,play a crucial role in enhancing the efficiency and stability of renewable energy systems.This paper explores the basic principles and functions of power electronics converters and their specific applications in photovoltaic power generation,wind power generation,and energy storage systems.Additionally,it analyzes the current innovations in high-efficiency energy conversion,multilevel conversion technology,and the application of new materials and devices.By studying these technologies,the aim is to promote the widespread application of power electronics converters in renewable energy systems and provide theoretical and technical support for achieving sustainable energy development.
基金supported by the Science and Technology Project of Central China Branch of State Grid Corporation of China under 5214JS220010.
文摘Along with the increasing integration of renewable energy generation in AC-DC power networks,investigating the dynamic behaviors of this complex system with a proper equivalent model is significant.This paper presents an equivalent modeling method for the AC-DC power networks with doubly-fed induction generator(DFIG)based wind farms to decrease the simulation scale and computational burden.For the AC-DC power networks,the equivalent modeling strategy in accordance with the physical structure simplification is stated.Regarding the DFIG-based wind farms,the equivalent modeling based on the sequential identification of multi-machine parameters using the improved chaotic cuckoo search algorithm(ICCSA)is conducted.In light of the MATLAB simulation platform,a two-zone four-DC interconnected power grid with wind farms is built to check the efficacy of the proposed equivalentmodelingmethod.Fromthe simulation analyses and comparative validation in different algorithms and cases,the proposed method can precisely reflect the steady and dynamic performance of the demonstrated system under N-1 and N-2 fault scenarios,and it can efficiently achieve the parameter identification of the wind farms and fulfill the equivalent modeling.Consequently,the proposed approach’s effectiveness and suitability are confirmed.
文摘This study presents a comprehensive impact analysis of the rotor angle stability of a proposed international connection between the Philippines and Sabah,Malaysia,as part of the Association of Southeast Asian Nations(ASEAN)Power Grid.This study focuses on modeling and evaluating the dynamic performance of the interconnected system,considering the high penetration of renewable sources.Power flow,small signal stability,and transient stability analyses were conducted to assess the ability of the proposed linked power system models to withstand small and large disturbances,utilizing the Power Systems Analysis Toolbox(PSAT)software in MATLAB.All components used in the model are documented in the PSAT library.Currently,there is a lack of publicly available studies regarding the implementation of this specific system.Additionally,the study investigates the behavior of a system with a high penetration of renewable energy sources.Based on the findings,this study concludes that a system is generally stable when interconnection is realized,given its appropriate location and dynamic component parameters.Furthermore,the critical eigenvalues of the system also exhibited improvement as the renewable energy sources were augmented.
文摘The nature of variable and uncertainty from renewable energy sources (RESs) makes them challenging to be integrated into the main grid separately. A Virtual Power Plant (VPP) is proposed to aggregate the capacities of RESs and facilitate the integration and management in a decentralized manner. In this paper, a novel framework for optimal energy management of VPP considering key features such as handling uncertainties with RESs, reducing operating costs and regulating system voltage levels is proposed, and a two-stage stochastic simulation is formulated to address the uncertainties of RESs generation and electricity prices. Simulation result show that the framework can benefit from ensuring the energy balance and system security, as well as reducing the operation costs.
文摘On March 19, the construction of a 10-MW photovoltaic power plant and a 1 000-kW new type geothermal power generation project were started by Guodian Longyuan Group in Yanbajing Town, Dangxiong County of Tibet.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through the Large Groups Project under grant number(71/43)Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2023R203)+1 种基金Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:22UQU4340237DSR61This study is supported via funding from Prince Sattam bin Abdulaziz University project number(PSAU/2023/R/1444).
文摘Recently,renewable energy(RE)has become popular due to its benefits,such as being inexpensive,low-carbon,ecologically friendly,steady,and reliable.The RE sources are gradually combined with non-renewable energy(NRE)sources into electric grids to satisfy energy demands.Since energy utilization is highly related to national energy policy,energy prediction using artificial intelligence(AI)and deep learning(DL)based models can be employed for energy prediction on RE and NRE power resources.Predicting energy consumption of RE and NRE sources using effective models becomes necessary.With this motivation,this study presents a new multimodal fusionbased predictive tool for energy consumption prediction(MDLFM-ECP)of RE and NRE power sources.Actual data may influence the prediction performance of the results in prediction approaches.The proposed MDLFMECP technique involves pre-processing,fusion-based prediction,and hyperparameter optimization.In addition,the MDLFM-ECP technique involves the fusion of four deep learning(DL)models,namely long short-termmemory(LSTM),bidirectional LSTM(Bi-LSTM),deep belief network(DBN),and gated recurrent unit(GRU).Moreover,the chaotic cat swarm optimization(CCSO)algorithm is applied to tune the hyperparameters of the DL models.The design of the CCSO algorithm for optimal hyperparameter tuning of the DL models,showing the novelty of the work.A series of simulations took place to validate the superior performance of the proposed method,and the simulation outcome emphasized the improved results of the MDLFM-ECP technique over the recent approaches with minimum overall mean absolute percentage error of 3.58%.
基金supported partly by the National Key R&D Program of China(2018YFA0702200)the Science and Technology Project of State Grid Shandong Electric Power Company(520604190002)。
文摘With the development of carbon electricity,achieving a low-carbon economy has become a prevailing and inevitable trend.Improving low-carbon expansion generation planning is critical for carbon emission mitigation and a lowcarbon economy.In this paper,a two-layer low-carbon expansion generation planning approach considering the uncertainty of renewable energy at multiple time scales is proposed.First,renewable energy sequences considering the uncertainty in multiple time scales are generated based on the Copula function and the probability distribution of renewable energy.Second,a two-layer generation planning model considering carbon trading and carbon capture technology is established.Specifically,the upper layer model optimizes the investment decision considering the uncertainty at a monthly scale,and the lower layer one optimizes the scheduling considering the peak shaving at an hourly scale and the flexibility at a 15-minute scale.Finally,the results of different influence factors on low-carbon generation expansion planning are compared in a provincial power grid,which demonstrate the effectiveness of the proposed model.
基金Department of Science and Technology of Guangdong Province(Project 2019B0909011001).
文摘An industrial park is one of the typical en ergy con sumption schemes in power systems owing to the heavy in dustrial loads and their abilities to resp ond to electricity price cha nges.Therefore,en ergy in tegrati on in the industrial sector is significant.Accordingly,the concept of industrial virtual power plant(IVPP)has been proposed to deal with such problems.This study demonstrates an IVPP model to man age resources in an eco-i ndustrial park,including en ergy storage systems,dema nd resp onse(DR)resources,and distributed energies.In addition,fuzzy theory is used to cha nge the deterministic system constraints to fuzzy parameters,considering the uncertainty of renewable energy,and fuzzy chance constraints are then set based on the credibility theory.By maximizi ng the daily ben efits of the IVPP owners in day-ahead markets,DR and energy storage systems can be scheduled economically.Therefore,the energy between the grid and IVPP can flow in both directions:the surplus renewable electricity of IVPP can be sold in the market;when the electricity gen erated in side IVPP is not enough for its use,IVPP can also purchase power through the market.Case studies based on three win d-level scenarios dem on strate the efficie nt syn ergies betwee n IVPP resources.The validatio n results indicate that IVPP can optimize the supply and demand resources in in dustrial parks,thereby decarbonizing the power systems.
基金supported by National Key Research and Development Programe of China (No.2018YFB0904000)the State Grid Science & Technology Project (Title: Northeast Asia Power Grid Interconnection Feasibility Study)
文摘To address the issue of climate change caused by the use of polluting, non-renewable energy sources, the use of renewable energy has gained momentum worldwide. Consequently, the increased integration of renewable energy sources into power grids has necessitated the inclusion of flexible capacities in the power systems to solve problems of intermittent and fluctuating characteristics associated with renewable generation outputs. In this work, we study the regulating cost of a power system with high renewable penetration using an improved time-series system production simulation analysis method. The operational cost of the system is considered as the objective function. Three different methods to increase regulating capacities, including using interconnection lines, building additional flexible power capacities, and retrofitting existing thermal power plants, are adopted and simulated to compare the costs of accommodating renewable energy in the system in these cases. Our results indicate that increasing the flexibility of thermal power plants and developing crossregional connection lines are cost-effective methods of increasing renewable energy consumption.
文摘Since China is being faced with the pressure of energy shortage and environmental conservation, the power industry in China has to actively develop the renewable energy for electricity generation while raising the utilization efficiency of conventional energy. In view of such facts, China Guodian Corporation decided on a development strategy of giving priority to green power, such as wind power. Based on the national planning of wind power development, the corporation set out its own target of installing wind power capacity of 1500 MW by the end of 2010, and is adopting appropriate measures including promoting the localization of wind turbines and developing hydropower, thermal power and wind power simultaneously. Moreover, it put some relevant suggestions.
文摘New method for determination of optimal placement and value of installed capacity of renewable source of energy (RES) by the criterion of minimum losses of active power, that allows taking into consideration the dependence of RES on natural conditions of region, schedule of energy supply, parameters and configuration of distribution network is suggested in the paper. Results of computations of test scheme confirm the efficiency of the proposed method and its simplicity as compared with the methods considered in literature sources.
文摘This paper comes up with a concept of synergetic advanced dispatch in order to deal with the ever-increasing uncertainty in power grid: Decision is made with respecting to AGC units and active load on the basis of synergetic unit combination such that active load’s advantages in regulation speed is put to full use in achieving efficient cooperation with renewable energy power. Meanwhile, factoring in allowable frequency variation range during decision-making may help to reduce AGC units’ regulation load and improve power grid's capacity of accommodating renewable energy power. Calculation example analysis suggested that the model and technique presented in this paper is capable of efficient coordination between active loads and renewable energy power, delivering friendly transition with day-ahead dispatch and AVC control.
文摘Necessity of electricity access in remote area is the main reason for expanding decentralized energy system such as stand-alone power systems. The best electrical power supply must provide a constant magnitude and frequency voltage. Therefore, good power quality is an important factor for the reliable operation of electrical loads in a power system. However, the current drawn by most of electronic devices and non-linear loads are non-sinusoidal, which can result in a poor power quality, especially in off-grid power systems. Poor power quality is characterized by electrical disturbances such as transients, sags, swells, harmonics and even interruptions in the power supply. Off-grid power systems worldwide often struggle with system failures and equipment damage due to poor power quality. In this paper, MAT- LAB/Simulink is used to model and analyses power quality in an off-grid renewable energy system. The results show high voltage transient when the inductive loads were switched OFF. The voltage and current harmonics are also determined and compared for various types of loads.
文摘Recently, introduction of renewable energy sources like wind power generation and photovoltaic power generation has been increasing from the viewpoint of environmental problems. However, renewable energy power supplies have unstable output due to the influence of weather conditions such as wind speed variations, which may cause fluctuations of voltage and frequency in the power system. This paper proposes fuzzy PD based virtual inertia control system to decrease frequency fluctuations in power system caused by fluctuating output of renewable energy sources. The proposed new method is based on the coordinated control of HVDC interconnection line and battery, and energy balancing control is also incorporated in it. Finally, it is concluded that the proposed system is very effective for suppressing the frequency fluctuations of the power system due to the large-scale wind power generation and solar power generation and also for keeping the energy balancing in the HVDC transmission line.
基金supported by National Natural Science Foundation Joint Key Project of China(2016YFB0900900).
文摘The utilization of renewable energy in sending-end power grids is increasing rapidly,which brings difficulties to voltage control.This paper proposes a coordinated voltage control strategy based on model predictive control(MPC)for the renewable energy power plants of wind and solar power connected to a weak sending-end power grid(WSPG).Wind turbine generators(WTGs),photovoltaic arrays(PVAs),and a static synchronous compensator are coordinated to maintain voltage within a feasible range during operation.This results in the full use of the reactive power capability of WTGs and PVAs.In addition,the impact of the active power outputs of WTGs and PVAs on voltage control are considered because of the high R/X ratio of a collector system.An analytical method is used for calculating sensitivity coefficients to improve computation efficiency.A renewable energy power plant with 80 WTGs and 20 PVAs connected to a WSPG is used to verify the proposed voltage control strategy.Case studies show that the coordinated voltage control strategy can achieve good voltage control performance,which improves the voltage quality of the entire power plant.
文摘It is difficult for renewable energy resources to provide constant power with excellent quality for the grid system. This serial research proposes a power stabilization system with a pumped storage to guarantee power quality and capacity, while the outputs from the energy resources are at unstable and/or fluctuating conditions. The power stabilization system with a counter-rotating type pump-turbine unit was prepared and operated at the pumping and the turbine modes. The unit composed of the tandem impellers/runners connected to the inner and the outer armatures of the unique motor/generator. The experiments have verified that this type pump-turbine unit is reasonably effective to stabilize momentarily/instantaneously the fluctuating power from the renewable energy resources.
文摘This paper focused on generation scheduling problem with consideration of wind, solar and PHES (pumped hydro energy storage) system. Wind, solar and PHES are being considered in the NEPS (northeast power system) of Afghanistan to schedule all units power output so as to minimize the total operation cost of thermal units plus aggregate imported power tariffs during the scheduling horizon, subject to the system and unit operation constraints. Apart from determining the optimal output power of each unit, this research also involves in deciding the on/off status of thermal units. In order to find the optimal values of the variables, GA (genetic algorithm) is proposed. The algorithm performs efficiently in various sized thermal power system with equivalent wind, solar and PHES and can produce a high-quality solution. Simulation results reveal that with wind, solar and PHES the system is the most-cost effective than the other combinations.