Let T<sub>n </sub>be the set of ribbon L-shaped n-ominoes for some n≥4 even, and let T<sup>+</sup><sub>n</sub> be T<sub>n</sub> with an extra 2 x 2 square. We investiga...Let T<sub>n </sub>be the set of ribbon L-shaped n-ominoes for some n≥4 even, and let T<sup>+</sup><sub>n</sub> be T<sub>n</sub> with an extra 2 x 2 square. We investigate signed tilings of rectangles by T<sub>n</sub> and T<sup>+</sup><sub>n</sub> . We show that a rectangle has a signed tiling by T<sub>n</sub> if and only if both sides of the rectangle are even and one of them is divisible by n, or if one of the sides is odd and the other side is divisible by . We also show that a rectangle has a signed tiling by T<sup>+</sup><sub>n, </sub> n≥6 even, if and only if both sides of the rectangle are even, or if one of the sides is odd and the other side is divisible by . Our proofs are based on the exhibition of explicit GrÖbner bases for the ideals generated by polynomials associated to the tiling sets. In particular, we show that some of the regular tiling results in Nitica, V. (2015) Every tiling of the first quadrant by ribbon L n-ominoes follows the rectangular pattern. Open Journal of Discrete Mathematics, 5, 11-25, cannot be obtained from coloring invariants.展开更多
We show that a rectangle can be signed tiled by ribbon L n-ominoes, n odd, if and only if it has a side divisible by n. A consequence of our technique, based on the exhibition of an explicit Gröbner basis, is...We show that a rectangle can be signed tiled by ribbon L n-ominoes, n odd, if and only if it has a side divisible by n. A consequence of our technique, based on the exhibition of an explicit Gröbner basis, is that any k-inflated copy of the skewed L n-omino has a signed tiling by skewed L n-ominoes. We also discuss regular tilings by ribbon L n-ominoes, n odd, for rectangles and more general regions. We show that in this case obstructions appear that are not detected by signed tilings.展开更多
文摘Let T<sub>n </sub>be the set of ribbon L-shaped n-ominoes for some n≥4 even, and let T<sup>+</sup><sub>n</sub> be T<sub>n</sub> with an extra 2 x 2 square. We investigate signed tilings of rectangles by T<sub>n</sub> and T<sup>+</sup><sub>n</sub> . We show that a rectangle has a signed tiling by T<sub>n</sub> if and only if both sides of the rectangle are even and one of them is divisible by n, or if one of the sides is odd and the other side is divisible by . We also show that a rectangle has a signed tiling by T<sup>+</sup><sub>n, </sub> n≥6 even, if and only if both sides of the rectangle are even, or if one of the sides is odd and the other side is divisible by . Our proofs are based on the exhibition of explicit GrÖbner bases for the ideals generated by polynomials associated to the tiling sets. In particular, we show that some of the regular tiling results in Nitica, V. (2015) Every tiling of the first quadrant by ribbon L n-ominoes follows the rectangular pattern. Open Journal of Discrete Mathematics, 5, 11-25, cannot be obtained from coloring invariants.
文摘We show that a rectangle can be signed tiled by ribbon L n-ominoes, n odd, if and only if it has a side divisible by n. A consequence of our technique, based on the exhibition of an explicit Gröbner basis, is that any k-inflated copy of the skewed L n-omino has a signed tiling by skewed L n-ominoes. We also discuss regular tilings by ribbon L n-ominoes, n odd, for rectangles and more general regions. We show that in this case obstructions appear that are not detected by signed tilings.