期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Complete-basis-reprogrammable coding metasurface for generating dynamicallycontrolled holograms under arbitrary polarization states
1
作者 Zuntian Chu Xinqi Cai +7 位作者 Ruichao Zhu Tonghao Liu Huiting Sun Tiefu Li Yuxiang Jia Yajuan Han Shaobo Qu Jiafu Wang 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第9期65-80,共16页
Reprogrammable metasurfaces,which establish a fascinating bridge between physical and information domains,can dynamically control electromagnetic(EM)waves in real time and thus have attracted great attentions from res... Reprogrammable metasurfaces,which establish a fascinating bridge between physical and information domains,can dynamically control electromagnetic(EM)waves in real time and thus have attracted great attentions from researchers around the world.To control EM waves with an arbitrary polarization state,it is desirable that a complete set of basis states be controlled independently since incident EM waves with an arbitrary polarization state can be decomposed as a linear sum of these basis states.In this work,we present the concept of complete-basis-reprogrammable coding metasurface(CBR-CM)in reflective manners,which can achieve independently dynamic controls over the reflection phases while maintaining the same amplitude for left-handed circularly polarized(LCP)waves and right-handed circularly polarized(RCP)waves.Since LCP and RCP waves together constitute a complete basis set of planar EM waves,dynamicallycontrolled holograms can be generated under arbitrarily polarized wave incidence.The dynamically reconfigurable metaparticle is implemented to demonstrate the CBR-CM’s robust capability of controlling the longitudinal and transverse positions of holograms under LCP and RCP waves independently.It’s expected that the proposed CBR-CM opens up ways of realizing more sophisticated and advanced devices with multiple independent information channels,which may provide technical assistance for digital EM environment reproduction. 展开更多
关键词 basis vector control reprogrammable metasurface dynamically-controlled holograms arbitrary polarization state broadband
下载PDF
A Polarization Programmable Antenna Array
2
作者 Dingzhao Chen Yanhui Liu +4 位作者 Ming Li Pan Guo Zhuo Zeng Jun Hu Y.Jay Guo 《Engineering》 SCIE EI CAS 2022年第9期100-114,共15页
Reconfigurable antennas are becoming a major antenna technology for future wireless communications and sensing systems.It is known that,with a single linear polarization(LP)reconfigurable antenna element,a preferred p... Reconfigurable antennas are becoming a major antenna technology for future wireless communications and sensing systems.It is known that,with a single linear polarization(LP)reconfigurable antenna element,a preferred polarization can be produced from a set of multiple polarization states,thus improving the quality of the communication link.This paper presents a new concept of a polarization programmable reconfigurable antenna array that consists of a number of polarization reconfigurable antenna elements with a finite number of possible polarization states.By employing a new optimization strategy and programming the polarization states of all the array elements,we demonstrate that it is possible to realize any desired LP in the vectorial array radiation pattern with accurate control of sidelobe and crosspolarization levels(XPLs),thereby achieving the desired polarization to perfectly match that of the required communications signal.Both numerical and experimental results are provided to prove the concept,and they agree well with each other. 展开更多
关键词 Antenna array Polarization reprogrammable antenna Reconfigurable antenna
下载PDF
Mechanically reprogrammable Pancharatnam-Berry metasurface for microwaves 被引量:9
3
作者 Quan Xu Xiaoqiang Su +9 位作者 Xueqian Zhang Lijuan Dong Lifeng Liu Yunlong Shi Qiu Wang Ming Kang Andrea Alù Shuang Zhang Jiaguang Han Weili Zhang 《Advanced Photonics》 SCIE EI CSCD 2022年第1期69-79,共11页
Metasurfaces have enabled the realization of several optical functionalities over an ultrathin platform,fostering the exciting field of flat optics.Traditional metasurfaces are achieved by arranging a layout of static... Metasurfaces have enabled the realization of several optical functionalities over an ultrathin platform,fostering the exciting field of flat optics.Traditional metasurfaces are achieved by arranging a layout of static meta-atoms to imprint a desired operation on the impinging wavefront,but their functionality cannot be altered.Reconfigurability and programmability of metasurfaces are the next important step to broaden their impact,adding customized on-demand functionality in which each meta-atom can be individually reprogrammed.We demonstrate a mechanical metasurface platform with controllable rotation at the meta-atom level,which can implement continuous Pancharatnam–Berry phase control of circularly polarized microwaves.As the proof-of-concept experiments,we demonstrate metalensing,focused vortex beam generation,and holographic imaging in the same metasurface template,exhibiting versatility and superior performance.Such dynamic control of electromagnetic waves using a single,low-cost metasurface paves an avenue towards practical applications,driving the field of reprogrammable intelligent metasurfaces for a variety of applications. 展开更多
关键词 reprogrammable metasurfaces Pancharatnam-Berry phase mechanical metasurfaces microwaves
原文传递
Reprogrammable 3D Mesostructures Through Compressive Buckling of Thin Films with Prestrained Shape Memory Polymer 被引量:4
4
作者 Xiaogang Guo Zheng Xu +5 位作者 Fan Zhang Xueju Wang Yanyang Zi John A. Rogers Yonggang Huang Yihui Zhang 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2018年第5期589-598,共10页
The mechanically guided assembly that relies on the compressive buckling of strate- gically patterned 2D thin films represents a robust route to complex 3D mesostructures in advanced materials and even functional micr... The mechanically guided assembly that relies on the compressive buckling of strate- gically patterned 2D thin films represents a robust route to complex 3D mesostructures in advanced materials and even functional micro-devices. Based on this approach, formation of complex 3D configurations with suspended curvy features or hierarchical geometries remains a challenge. In this paper, we incorporate the prestrained shape memory polymer in the 2D precur- sor design to enable local rolling deformations after the mechanical assembly through compressive buckling. A theoretical model captures quantitatively the effect of key design parameters on local rolling deformations. The combination of precisely controlled global buckling and local rolling expands substantially the range of accessible 3D configurations. The combined experimental and theoretical studies over a dozen of examples demonstrate the utility of the proposed strategy in achieving complex reprogrammable 3D mesostructures. 展开更多
关键词 Mechanically guided 3D assembly Reprogrammable 3D mesostructures Shapememory polymer BUCKLING ROLLING
原文传递
Remotely mind-controlled metasurface via brainwaves 被引量:8
5
作者 Ruichao Zhu Jiafu Wang +9 位作者 Tianshuo Qiu Yajuan Han Xinmin Fu Yuzhi Shi Xingsi Liu Tonghao Liu Zhongtao Zhang Zuntian Chu Cheng‑Wei Qiu Shaobo Qu 《eLight》 2022年第1期121-131,共11页
The power of controlling objects with mind has captivated a popular fascination to human beings.One possible path is to employ brain signal collecting technologies together with emerging programmable metasurfaces(PM),... The power of controlling objects with mind has captivated a popular fascination to human beings.One possible path is to employ brain signal collecting technologies together with emerging programmable metasurfaces(PM),whose functions or operating modes can be switched or customized via on-site programming or pre-defined software.Nevertheless,most of existing PMs are wire-connected to users,manually-controlled and not real-time.Here,we propose the concept of remotely mind-controlled metasurface(RMCM)via brainwaves.Rather than DC voltage from power supply or AC voltages from signal generators,the metasurface is controlled by brainwaves collected in real time and transmitted wirelessly from the user.As an example,we demonstrated a RMCM whose scattering pattern can be altered dynamically according to the user’s brain waves via Bluetooth.The attention intensity information is extracted as the control signal and a mapping between attention intensity and scattering pattern of the metasurface is established.With such a framework,we experimentally demonstrated and verified a prototype of such metasurface system which can be remotely controlled by the user to modify its scattering pattern.This work paves a new way to intelligent metasurfaces and may find applications in health monitoring,5G/6G communications,smart sensors,etc. 展开更多
关键词 Brainwave Mind-controlled Reprogrammable metasurface Intelligent metasurface
原文传递
116 dB dynamic range CMOS readout circuit for MEMS capacitive accelerometer
6
作者 龙善丽 刘艳 +2 位作者 贺克军 唐兴刚 陈钱 《Journal of Semiconductors》 EI CAS CSCD 2014年第9期117-121,共5页
A high stability in-circuit reprogrammable technique control system for a capacitive MEMS accelerometer is presented. Modulation and demodulation are used to separate the signal from the low frequency noise. A low-noi... A high stability in-circuit reprogrammable technique control system for a capacitive MEMS accelerometer is presented. Modulation and demodulation are used to separate the signal from the low frequency noise. A low-noise low-offset charge integrator is employed in this circuit to implement a capacitance-to-voltage converter and minimize the noise and offset. The application-specific integrated circuit (ASIC) is fabricated in a 0.5 /μm one-ploy three-metal CMOS process. The measured results of the proposed circuit show that the noise floor of the ASIC is -116 dBV, the sensitivity of the accelerometer is 66 mV/g with a nonlinearity of 0.5%. The chip occupies 3.5×2.5 mm2 and the current is 3.5 mA. 展开更多
关键词 in-circuit reprogrammable technique MEMS accelerometer modulation and demodulation sensitiv-ity of accelerometer
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部