期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Response Spectrum Analysis of 7-story Assembled Frame Structure with Energy Dissipation System
1
作者 Jin Zhao Yi Wang Zhengwei Ma 《Structural Durability & Health Monitoring》 EI 2023年第2期159-173,共15页
Viscoelastic damper is an effective passive damping device,which can reduce the seismic response of the structure by increasing the damping and dissipating the vibration energy of structures.It has a wide application ... Viscoelastic damper is an effective passive damping device,which can reduce the seismic response of the structure by increasing the damping and dissipating the vibration energy of structures.It has a wide application prospect in actual structural vibration control because of simple device and economical material.In view of the poor seismic behaviors of assembled frame structure connections,various energy dissipation devices are proposed to improve the seismic performance.The finite element numerical analysis method is adopted to analyze relevant energy dissipation structural parameters.The response spectrum of a 7-story assembled frame structure combined the ordinary steel support,ordinary viscoelastic damper,and viscoelastic damper with displacement amplification device is analyzed.The analysis results show that the mechanical behavior of assembled frame structure with ordinary steel supports are not significantly different from those without energy dissipation devices.The assembled frame structure with viscoelastic damper has better seismic performance and energy dissipation,especially for the viscoelastic damper with displacement amplification devices.The maximum value of inter-story displacement angle decreases by 32.24%;the maximum floor displacement decreases by 31.91%,and the base shear decreases by 13.62%compared with the assembled frame structures without energy dissipation devices.The results show that the seismic fortification ability of the structure is significantly improved,and the overall structure is more uniformly stressed.The damping structure with viscoelastic damper mainly reduces the dynamic response of the structure by increasing the damping coefficient,rather than by changing the natural vibration period of the structure.This paper provides an effective theoretical basis and reference for improving the energy dissipation system and the seismic performance of assembled frame structures. 展开更多
关键词 Assembled frame structure energy dissipation devices response spectrum analysis viscoelastic damper
下载PDF
Comparison between Different Shapes of Structure by Response Spectrum Method of Dynamic Analysis
2
作者 Jaya Rajkumar Ramchandani Madhuri Nilesh Mangulkar 《Open Journal of Civil Engineering》 2016年第2期131-138,共8页
Several procedures for non-linear static and dynamic analysis of structures have been developed in recent years. In this paper, the response spectrum analysis is performed on two different shapes i.e. regular and irre... Several procedures for non-linear static and dynamic analysis of structures have been developed in recent years. In this paper, the response spectrum analysis is performed on two different shapes i.e. regular and irregular shape of structure by using STAAD PRO. And the comparison results are studied and compared accounting for the earthquake characteristics and the structure dynamic characteristics. As the results show that the earthquake response peak values and the main response frequencies are very close and comparable. It can be referred to by the engineering applications. 展开更多
关键词 Seismic response spectrum analysis STAAD PRO Dynamic Characteristics Earthquake response Peak
下载PDF
Structural Design Optimization of a Vertical Axis Wind Turbine for Seismic Qualification and Lightweight
3
作者 Young-Hyu Choi Min-Gyu Kang 《World Journal of Engineering and Technology》 2016年第3期158-167,共10页
Recently, there is a growing interest in seismic qualification of ridges, buildings and mechanical equipment worldwide due to increase of accidents caused by earthquake. Severe earthquake can bring serious problems in... Recently, there is a growing interest in seismic qualification of ridges, buildings and mechanical equipment worldwide due to increase of accidents caused by earthquake. Severe earthquake can bring serious problems in the wind turbines and eventually lead to an interruption to their electric power supply. To overcome and prevent these undesirable problems, structural design optimization of a small vertical axis wind turbine has performed, in this study, for seismic qualification and lightweight by using a Genetic Algorithm (GA) subject to some design constraints such as the maximum stress limit, maximum deformation limit, and seismic acceleration gain limit. Also, the structural design optimizations were conducted for the four different initial design variable sets to confirm robustness of the optimization algorithm used. As a result, all the optimization results for the 4 different initial designs showed good agreement with each other properly. Thus the structural design optimization of a small vertical-axis wind turbine could be successfully accomplished. 展开更多
关键词 Small Vertical-Axis Wind Turbine Seismic Qualification response spectrum analysis Structural Design Optimization Genetic Algorithm
下载PDF
Seismic analysis of a super high-rise steel structure with horizontal strengthened storeys
4
作者 Yuanqing WANG Hui ZHOU +3 位作者 Yongjiu SHI Yi HUANG Gang SHI Siqing WEN 《Frontiers of Structural and Civil Engineering》 SCIE EI 2011年第3期394-404,共11页
Horizontal strengthened storeys are widely used in super high-rise steel structures to improve the lateral structural rigidity.This use has great effects on the seismic properties of the entire structure.The seismic p... Horizontal strengthened storeys are widely used in super high-rise steel structures to improve the lateral structural rigidity.This use has great effects on the seismic properties of the entire structure.The seismic properties of the Wuhan International Securities Building (a 68-storey super high-rise steel structure with three horizontal strengthened storeys) were evaluated in this study.Two approaches,i.e.,mode-superposition response spectrum analysis and time-history analysis,were employed to calculate the seismic response of the structure.The response spectrum analysis indicated that transition parts near the three strengthened storeys were weak zones of the structure because of the abrupt change in rigidity.In the response spectrum analysis approach,the Square Root of Sum of Square (SRSS) method was recommended when the vertical seismic effects could be ignored.However,the complete quadratic combination (CQC) method was superior to SRSS method when the vertical seismic effects should be considered.With the aid of time-history analysis,the seismic responses of the structure were obtained.The whiplash effect that spectrum analysis cannot reveal was observed through time-history analysis.This study provides references for the seismic design of super high-rise steel structures with horizontal strengthened storeys. 展开更多
关键词 seismic analysis steel structure super highrise horizontal strengthened storey response spectrum analysis time-history analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部