The binary systems of RE3+ with the newly synthesized fluorescent reagent H2L[5(2'-carboxybenzenazo) rhodanine] (RACP), 5-(4'-chloro-2'-carboxybenzenazo) rhodanine (Cl- RACP) and 5-(4'-bromo-2'-car...The binary systems of RE3+ with the newly synthesized fluorescent reagent H2L[5(2'-carboxybenzenazo) rhodanine] (RACP), 5-(4'-chloro-2'-carboxybenzenazo) rhodanine (Cl- RACP) and 5-(4'-bromo-2'-carboxybenzenazo) rhodanine (Br-RACP) in 70% ethanol aqueous solutions have been studied by potentiometric titration. The formation constants and distribution of various species al different pH have been determined. The apparent dissociation constants of H2L decrease on the following sequence:RACP>Cl-RACP>Br-RACP, but the cumulative formation constants of the complexes with Nd3+ remain constant. Further investigation on the binary systems of 15 RE elements with RACP. 1gβ110 and 1gβ120 values shows 'tetrad effect', and no complex in the form of ML3 exists in the systems.展开更多
A facile preparation of ZnO nanobelts by chemical precipitation technique and its utility as catalyst in Knoevenagel condensation of 2,4-thiazolidinedione/rhodanine has been described. X-ray diffraction and transmissi...A facile preparation of ZnO nanobelts by chemical precipitation technique and its utility as catalyst in Knoevenagel condensation of 2,4-thiazolidinedione/rhodanine has been described. X-ray diffraction and transmission electron microscopy techniques revealed the formation ZnO nanobelts. Scanning electron microscopic observations indicate that the lengths of nanobelts are ranging from a few hundreds of micrometers to a few millimeters. Its use for the condensation of aldehydes and active methylene compounds under solvent free reaction condition at 90℃ afforded the corresponding products in excellent yields in minute time.展开更多
Bacterial infections present a serious challenge to healthcare practitioners due to the emergence of resistance to numerous conventional antibacterial drugs. Therefore, new bacterial targets and new antimicrobials are...Bacterial infections present a serious challenge to healthcare practitioners due to the emergence of resistance to numerous conventional antibacterial drugs. Therefore, new bacterial targets and new antimicrobials are unmet medical needs. Rhodanine derivatives are known to possess potent antimicrobial activities. In this study, we determined the activity spectrum of a series of new rhodanine derivatives against representative Gram-positive and Gram-negative bacterial strains. Compounds 3a and 5a had the highest activity with minimum inhibitory concentrations in the range of 1.12 - 2.5 μg/mL. Transmission electron microscope results confirmed that activities against bacteria occurred via rupturing of the cell wall. Molecular modeling results suggested that rhodanine derivatives have the potential to irreversibly bind to the penicillin-binding protein (PBP) Ser62 residue in the active site. Thus, our results suggested that these rhodanine derivatives could be potential antibacterial drug candidates with strong activity against Gram-negative bacteria.展开更多
This theoretical chemical reactivity study was conducted using the Density Functional Theory (DFT) method, at computational level B3LYP/6-31G (d). It involved a series of six (06) 5-arylidene rhodanines and allowed to...This theoretical chemical reactivity study was conducted using the Density Functional Theory (DFT) method, at computational level B3LYP/6-31G (d). It involved a series of six (06) 5-arylidene rhodanines and allowed to predict the chemical reactivity of these compounds. DFT global chemical reactivity descriptors (HOMO and LUMO energies, chemical hardness, softness, electronegativity) were examined to predict the relative stability and reactivity of rhodanin derivatives. Thus, the compound 6 which has an energy gap between the orbitals of ΔEgap = 3.004 eV is the most polarizable, the most reactive, the least stable, the best electron donor and the softest molecule. Calculation of the local indices of reactivity as well as dual descriptors revealed that the sulfur heteroatom of the Rhodanine ring is the privileged site of electrophilic attack in a state of sp3 hybridization and privileged site of nucleophilic attack in a state of sp2 hybridization.展开更多
The 3VHE protein is considered as a potential target for the treatment of prostate cancer. In order to find new 3VHE inhibitors, pharmacophore models based on the molecular structure of rhodanine derivatives and a thr...The 3VHE protein is considered as a potential target for the treatment of prostate cancer. In order to find new 3VHE inhibitors, pharmacophore models based on the molecular structure of rhodanine derivatives and a three-dimensional quantitative structure-activity relationship model (3D-QSAR) have been developed and validated by different methods. The 3D-QSAR model was evaluated for its predictive performance on a diverse test set containing 18 prostate cancer inhibitors. It presents very interesting internal and external statistical validation parameters (SD = 0.081;R2 = 0.903;Q2 = 0.869;;F = 247.2). This result suggests that the 3D-QSAR combinatorial model can be used to search for new 3VHE inhibitors and predict their potential activity. Based on the combinatorial pharmacophore model, a virtual screening of the Enamine database was performed. Compounds selected after virtual screening were subjected to molecular docking protocols (HTVS, SP, XP and IFD). Twenty new active compounds have been identified and their absorption, distribution, metabolism and excretion (ADME) property calculated using Schr?dinger’s Qikprop module. These results suggest that these new compounds could constitute new chemical starting points for further structural optimization of 3VHE inhibitors.展开更多
A simple and selective method for the determination of silver ions was developed by utilizing the red- shift in emission wavelength of the core-shell CdSe/Cd5 quantum dots (QDs) functionalized with rhodanine upon th...A simple and selective method for the determination of silver ions was developed by utilizing the red- shift in emission wavelength of the core-shell CdSe/Cd5 quantum dots (QDs) functionalized with rhodanine upon the addition of Ag+. A linear relationship was observed between the shift and the increase in concentration of Ag+ in the range of 0.0125-12.5 μmol/L. The mechanism of the red-shift was investigated and suggested that the coordination between Ag+ and rhodanine on the QDs surface caused an increase of particle size, which resulted in the red-shift of the QDs' emission wavelength. A detection limit of 2 nmol/L was achieved. The developed method showed superior selectivity and was successfully applied to the determination of silver in environmental samples.展开更多
3-ethyl-5-(2-(3-ethyl-2-benzothiazolinylidene) ethyl (-idene)) rhodanine is a kind of promising photoelectric material for manufacturing organic solar cell. But its absorption spectrum is rather narrow. The phenomenon...3-ethyl-5-(2-(3-ethyl-2-benzothiazolinylidene) ethyl (-idene)) rhodanine is a kind of promising photoelectric material for manufacturing organic solar cell. But its absorption spectrum is rather narrow. The phenomenon that the absorption spectrum of its thin film is a little wider than that of the solution was observed by B. L. Morel.展开更多
Significant progress on the development of nonfullerene acceptors(NFAs)for organic solar cells(OSCs)has been made in the past several years,and the power conversion efficiency(PCE)exceeding 17%has been already realize...Significant progress on the development of nonfullerene acceptors(NFAs)for organic solar cells(OSCs)has been made in the past several years,and the power conversion efficiency(PCE)exceeding 17%has been already realized based on a tandem non-fullerene device.To date,NFAs with a linearly fused acceptor-donor-acceptor(A-D-A)structure are of great interest,due to their attracting synthetic flexibility and high photovoltaic performance.Rhodanine is one of the most studied electron-withdrawing moieties to construct such A-D-A type NFAs,and the resulting single-junction OSCs have produced PCEs of^10%.More interestingly,those rhodanine-based NFAs have demonstrated a particularly excellent compatibility with well-known P3HT donor,enabling respectable PCEs over 7%.Thus in this review,we summarize the important advances on rhodanine-based NFAs with a main focus on discussing the molecular design strategies,providing a better understanding of the structure-property relationship for those rhodanine-based NFAs.展开更多
A new star-shaped small molecule named TCNR3TTPA,with a triphenylamine(TPA)unit as the central building block and2-(1,1-dicyanomethylene)-3-octyl rhodanine(CNR)as the end-capped group,has been designed and synthesized...A new star-shaped small molecule named TCNR3TTPA,with a triphenylamine(TPA)unit as the central building block and2-(1,1-dicyanomethylene)-3-octyl rhodanine(CNR)as the end-capped group,has been designed and synthesized.TCNR3TTPA showed a deep highest occupied molecular orbital(HOMO)energy level( 5.60 e V)and broad absorption.The solution-processed bulk heterojunction(BHJ)solar cells based on TCNR3TTPA:PC61BM(1:1,w/w)exhibited a high open-circuit voltage(Voc)of 0.99 V,a short-circuit current density(Jsc)of 5.76 m A/cm2,and a power conversion efficiency(PCE)of 2.50%under the illumination of AM 1.5 G,100 m W/cm2.The high Voc is ascribed to the strong electron-with-drawing ability of the end-capped 2-(1,1-dicyanomethylene)-3-octyl rhodanine group.These results demonstrated that the Voc of small-molecule organic solar cells could be increased by introducing a strong electron-withdrawing end-capped block,and that this is an effective strategy to design high-performance small molecules for organic solar cells.展开更多
A fused-ring electron acceptor IDT-2BR1 based on indacenodithiophene core with hexyl side-chains flanked by benzothiadiazole rhodanine was designed and synthesized.In comparison with its counterpart with hexylphenyl s...A fused-ring electron acceptor IDT-2BR1 based on indacenodithiophene core with hexyl side-chains flanked by benzothiadiazole rhodanine was designed and synthesized.In comparison with its counterpart with hexylphenyl side-chains(IDT-2BR),IDT-2BR1exhibits higher highest occupied molecular orbital(HOMO)energy but similar lowest unoccupied molecular orbital(LUMO)energy(IDT-2BR1:HOMO=-5.37eV,LUMO=-3.67eV;IDT-2BR:HOMO=-5.52eV,LUMO=-3.69eV),red-shifted absorption and narrower bandgap.IDT-2BR1 has higher electron mobility(2.2×10^(-3)cm^2 V^(-1)s^(-1))than IDT-2BR(3.4×10^(-4)cm^2 V^(-1)s^(-1))due to the reduced steric hindrance and ordered molecular packing.Fullerene-free organic solar cells based on PTB7-Th:IDT-2BRl yield power conversion efficiencies up to 8.7%,higher than that of PTB7-Th:IDT-2BR(7.7%),with a high open circuit voltage of0.95 V and good device stability.展开更多
For non-fullerene acceptors(NFAs)with linear A_(2)-A_(1)-D-A_(1)-A_(2) backbone,there are three kinds of possible intermolecular interaction,A_(1)-A_(1),A_(1)-A_(2) and A_(2)-A_(2) stacking.Hence,it is a huge challeng...For non-fullerene acceptors(NFAs)with linear A_(2)-A_(1)-D-A_(1)-A_(2) backbone,there are three kinds of possible intermolecular interaction,A_(1)-A_(1),A_(1)-A_(2) and A_(2)-A_(2) stacking.Hence,it is a huge challenge to control this interaction and investigate the effect of intermolecular stacking model on the photovoltaic performance.Here,we adopt a feasible strategy,by utilizing different substituent groups on terminal A2 unit of dicyanomethylene rhodanine(RCN),to modulate this stacking model.According to theoretical calculation results,the molecule BTA3 with ethyl substituent packs via heterogeneous interaction between A_(2) and A_(1) unit in neighboring molecules.Surprisingly,the benzyl group can effectively transform the aggregation of BTA5 into homogeneous packing of A_(2)-A_(2) model,which might be driven by the strong interaction between benzyl and A1(benzotriazole)unit.However,different with benzyl,phenyl end group impedes the intermolecular interaction of BTA4 due to the large steric hindrance.When using a BTA-based D-π-A polymer J52-F as donor according to“Same-A-Strategy”,BTA3-5 could achieve ultrahigh open-circuit voltage(VOC)of 1.17–1.21 V.Finally,BTA5 with benzyl groups realized an improved power conversion efficiency(PCE)of 11.27%,obviously higher than that of BTA3(PCE=9.04%)and BTA4(PCE=5.61%).It is also worth noting that the same trend can be found when using other four classic p-type polymers of P3HT,PTB7,PTB7-Th and PBDB-T.This work not only investigates the intermolecular interaction of A_(2)-A_(1)-D-A_(1)-A_(2) type NFAs for the first time,but also provides a straightforward and universal method to change the interaction model and improve the photovoltaic performance.展开更多
文摘The binary systems of RE3+ with the newly synthesized fluorescent reagent H2L[5(2'-carboxybenzenazo) rhodanine] (RACP), 5-(4'-chloro-2'-carboxybenzenazo) rhodanine (Cl- RACP) and 5-(4'-bromo-2'-carboxybenzenazo) rhodanine (Br-RACP) in 70% ethanol aqueous solutions have been studied by potentiometric titration. The formation constants and distribution of various species al different pH have been determined. The apparent dissociation constants of H2L decrease on the following sequence:RACP>Cl-RACP>Br-RACP, but the cumulative formation constants of the complexes with Nd3+ remain constant. Further investigation on the binary systems of 15 RE elements with RACP. 1gβ110 and 1gβ120 values shows 'tetrad effect', and no complex in the form of ML3 exists in the systems.
文摘A facile preparation of ZnO nanobelts by chemical precipitation technique and its utility as catalyst in Knoevenagel condensation of 2,4-thiazolidinedione/rhodanine has been described. X-ray diffraction and transmission electron microscopy techniques revealed the formation ZnO nanobelts. Scanning electron microscopic observations indicate that the lengths of nanobelts are ranging from a few hundreds of micrometers to a few millimeters. Its use for the condensation of aldehydes and active methylene compounds under solvent free reaction condition at 90℃ afforded the corresponding products in excellent yields in minute time.
文摘Bacterial infections present a serious challenge to healthcare practitioners due to the emergence of resistance to numerous conventional antibacterial drugs. Therefore, new bacterial targets and new antimicrobials are unmet medical needs. Rhodanine derivatives are known to possess potent antimicrobial activities. In this study, we determined the activity spectrum of a series of new rhodanine derivatives against representative Gram-positive and Gram-negative bacterial strains. Compounds 3a and 5a had the highest activity with minimum inhibitory concentrations in the range of 1.12 - 2.5 μg/mL. Transmission electron microscope results confirmed that activities against bacteria occurred via rupturing of the cell wall. Molecular modeling results suggested that rhodanine derivatives have the potential to irreversibly bind to the penicillin-binding protein (PBP) Ser62 residue in the active site. Thus, our results suggested that these rhodanine derivatives could be potential antibacterial drug candidates with strong activity against Gram-negative bacteria.
文摘This theoretical chemical reactivity study was conducted using the Density Functional Theory (DFT) method, at computational level B3LYP/6-31G (d). It involved a series of six (06) 5-arylidene rhodanines and allowed to predict the chemical reactivity of these compounds. DFT global chemical reactivity descriptors (HOMO and LUMO energies, chemical hardness, softness, electronegativity) were examined to predict the relative stability and reactivity of rhodanin derivatives. Thus, the compound 6 which has an energy gap between the orbitals of ΔEgap = 3.004 eV is the most polarizable, the most reactive, the least stable, the best electron donor and the softest molecule. Calculation of the local indices of reactivity as well as dual descriptors revealed that the sulfur heteroatom of the Rhodanine ring is the privileged site of electrophilic attack in a state of sp3 hybridization and privileged site of nucleophilic attack in a state of sp2 hybridization.
文摘The 3VHE protein is considered as a potential target for the treatment of prostate cancer. In order to find new 3VHE inhibitors, pharmacophore models based on the molecular structure of rhodanine derivatives and a three-dimensional quantitative structure-activity relationship model (3D-QSAR) have been developed and validated by different methods. The 3D-QSAR model was evaluated for its predictive performance on a diverse test set containing 18 prostate cancer inhibitors. It presents very interesting internal and external statistical validation parameters (SD = 0.081;R2 = 0.903;Q2 = 0.869;;F = 247.2). This result suggests that the 3D-QSAR combinatorial model can be used to search for new 3VHE inhibitors and predict their potential activity. Based on the combinatorial pharmacophore model, a virtual screening of the Enamine database was performed. Compounds selected after virtual screening were subjected to molecular docking protocols (HTVS, SP, XP and IFD). Twenty new active compounds have been identified and their absorption, distribution, metabolism and excretion (ADME) property calculated using Schr?dinger’s Qikprop module. These results suggest that these new compounds could constitute new chemical starting points for further structural optimization of 3VHE inhibitors.
基金The National Natural Science Foundation of China is thanked for financial support(Nos.20345006 and 20575043)
文摘A simple and selective method for the determination of silver ions was developed by utilizing the red- shift in emission wavelength of the core-shell CdSe/Cd5 quantum dots (QDs) functionalized with rhodanine upon the addition of Ag+. A linear relationship was observed between the shift and the increase in concentration of Ag+ in the range of 0.0125-12.5 μmol/L. The mechanism of the red-shift was investigated and suggested that the coordination between Ag+ and rhodanine on the QDs surface caused an increase of particle size, which resulted in the red-shift of the QDs' emission wavelength. A detection limit of 2 nmol/L was achieved. The developed method showed superior selectivity and was successfully applied to the determination of silver in environmental samples.
文摘3-ethyl-5-(2-(3-ethyl-2-benzothiazolinylidene) ethyl (-idene)) rhodanine is a kind of promising photoelectric material for manufacturing organic solar cell. But its absorption spectrum is rather narrow. The phenomenon that the absorption spectrum of its thin film is a little wider than that of the solution was observed by B. L. Morel.
基金financial support from the National Natural Science Foundation of China (21704030 and 21602115)
文摘Significant progress on the development of nonfullerene acceptors(NFAs)for organic solar cells(OSCs)has been made in the past several years,and the power conversion efficiency(PCE)exceeding 17%has been already realized based on a tandem non-fullerene device.To date,NFAs with a linearly fused acceptor-donor-acceptor(A-D-A)structure are of great interest,due to their attracting synthetic flexibility and high photovoltaic performance.Rhodanine is one of the most studied electron-withdrawing moieties to construct such A-D-A type NFAs,and the resulting single-junction OSCs have produced PCEs of^10%.More interestingly,those rhodanine-based NFAs have demonstrated a particularly excellent compatibility with well-known P3HT donor,enabling respectable PCEs over 7%.Thus in this review,we summarize the important advances on rhodanine-based NFAs with a main focus on discussing the molecular design strategies,providing a better understanding of the structure-property relationship for those rhodanine-based NFAs.
基金supported by the National Natural Science Foundation of China(51173199,51211140346,61405209)the National Basic Research Program of China(2014CB643501,2010DFA52310)+1 种基金the Shandong Provincial Natural Science Foundation(ZR2011BZ007)the Qingdao Municipal Science and Technology Program(11-2-4-22-hz)
文摘A new star-shaped small molecule named TCNR3TTPA,with a triphenylamine(TPA)unit as the central building block and2-(1,1-dicyanomethylene)-3-octyl rhodanine(CNR)as the end-capped group,has been designed and synthesized.TCNR3TTPA showed a deep highest occupied molecular orbital(HOMO)energy level( 5.60 e V)and broad absorption.The solution-processed bulk heterojunction(BHJ)solar cells based on TCNR3TTPA:PC61BM(1:1,w/w)exhibited a high open-circuit voltage(Voc)of 0.99 V,a short-circuit current density(Jsc)of 5.76 m A/cm2,and a power conversion efficiency(PCE)of 2.50%under the illumination of AM 1.5 G,100 m W/cm2.The high Voc is ascribed to the strong electron-with-drawing ability of the end-capped 2-(1,1-dicyanomethylene)-3-octyl rhodanine group.These results demonstrated that the Voc of small-molecule organic solar cells could be increased by introducing a strong electron-withdrawing end-capped block,and that this is an effective strategy to design high-performance small molecules for organic solar cells.
基金supported by the National Basic Research Program of China(2013CB834702)the National Natural Science Foundation of China(91433114)
文摘A fused-ring electron acceptor IDT-2BR1 based on indacenodithiophene core with hexyl side-chains flanked by benzothiadiazole rhodanine was designed and synthesized.In comparison with its counterpart with hexylphenyl side-chains(IDT-2BR),IDT-2BR1exhibits higher highest occupied molecular orbital(HOMO)energy but similar lowest unoccupied molecular orbital(LUMO)energy(IDT-2BR1:HOMO=-5.37eV,LUMO=-3.67eV;IDT-2BR:HOMO=-5.52eV,LUMO=-3.69eV),red-shifted absorption and narrower bandgap.IDT-2BR1 has higher electron mobility(2.2×10^(-3)cm^2 V^(-1)s^(-1))than IDT-2BR(3.4×10^(-4)cm^2 V^(-1)s^(-1))due to the reduced steric hindrance and ordered molecular packing.Fullerene-free organic solar cells based on PTB7-Th:IDT-2BRl yield power conversion efficiencies up to 8.7%,higher than that of PTB7-Th:IDT-2BR(7.7%),with a high open circuit voltage of0.95 V and good device stability.
基金This work was supported by the National Natural Science Foundation of China(51773046,51673048,21602040)the Strategic Priority Research Program of Chinese Academy of Sciences(XDB36000000)+1 种基金the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(QYZDBSSW-SLH033)the National Key Research and Development Program of China(2017YFA0206600).
文摘For non-fullerene acceptors(NFAs)with linear A_(2)-A_(1)-D-A_(1)-A_(2) backbone,there are three kinds of possible intermolecular interaction,A_(1)-A_(1),A_(1)-A_(2) and A_(2)-A_(2) stacking.Hence,it is a huge challenge to control this interaction and investigate the effect of intermolecular stacking model on the photovoltaic performance.Here,we adopt a feasible strategy,by utilizing different substituent groups on terminal A2 unit of dicyanomethylene rhodanine(RCN),to modulate this stacking model.According to theoretical calculation results,the molecule BTA3 with ethyl substituent packs via heterogeneous interaction between A_(2) and A_(1) unit in neighboring molecules.Surprisingly,the benzyl group can effectively transform the aggregation of BTA5 into homogeneous packing of A_(2)-A_(2) model,which might be driven by the strong interaction between benzyl and A1(benzotriazole)unit.However,different with benzyl,phenyl end group impedes the intermolecular interaction of BTA4 due to the large steric hindrance.When using a BTA-based D-π-A polymer J52-F as donor according to“Same-A-Strategy”,BTA3-5 could achieve ultrahigh open-circuit voltage(VOC)of 1.17–1.21 V.Finally,BTA5 with benzyl groups realized an improved power conversion efficiency(PCE)of 11.27%,obviously higher than that of BTA3(PCE=9.04%)and BTA4(PCE=5.61%).It is also worth noting that the same trend can be found when using other four classic p-type polymers of P3HT,PTB7,PTB7-Th and PBDB-T.This work not only investigates the intermolecular interaction of A_(2)-A_(1)-D-A_(1)-A_(2) type NFAs for the first time,but also provides a straightforward and universal method to change the interaction model and improve the photovoltaic performance.