In this paper,ring-opening polymerization of trimethylene carbonate(TMC)with rare earth(Nd,Y,La)ρ-tert- butylcalix[n]arene(n=4,6,and 8)complexes as catalysts has been studied.Poly(trimethylene carbonate)(PTMC)with M_...In this paper,ring-opening polymerization of trimethylene carbonate(TMC)with rare earth(Nd,Y,La)ρ-tert- butylcalix[n]arene(n=4,6,and 8)complexes as catalysts has been studied.Poly(trimethylene carbonate)(PTMC)with M_v of 21,400 was produced by bulk polymerization under the conditions as follows:[TMC]_0/[Nd](molar ratio)=1000,80℃, 8 h.Mechanism study reveals that the polymerization proceeds via a coordination mechanism.展开更多
The ring-opening polymerization of e-caprolactone (CL) initiated by novel single lanthanide tris(4-tert-butylphenolate)s [Ln(OTBP)3] is reported. Single-component La(OTBP)3 can effectively prepare polycaprolactone (PC...The ring-opening polymerization of e-caprolactone (CL) initiated by novel single lanthanide tris(4-tert-butylphenolate)s [Ln(OTBP)3] is reported. Single-component La(OTBP)3 can effectively prepare polycaprolactone (PCL) with over 90% yield and viscosity average molecular weight about 60 x 10 under quite mild conditions: molar ratio of CL to initiator is 1000, 60 C, 2 h in toluene. Mechanism study indicates that the monomer inserts into the growing chain via the break of acyl-oxygen bond of CL.展开更多
Ring-opening polymerization of ε-caprolactone has been carried out by using rare earth Schiff base complexes: lanthanide tris(N-phenyl-3,5-di-t-butylsalicylaldiminato)s [Ln(OPBS)3] as single component catalyst f...Ring-opening polymerization of ε-caprolactone has been carried out by using rare earth Schiff base complexes: lanthanide tris(N-phenyl-3,5-di-t-butylsalicylaldiminato)s [Ln(OPBS)3] as single component catalyst for the first time. The influences of different rare earth elements, monomer and catalyst concentration as well as reaction time on the polymerization were investigated. Mechanism studies showed that monomer inserts into the active site with the acyl-oxygen bond scission rather than the break of alkyl-oxygen bond.展开更多
A series of cyclic (arylene phosphonate) oligomers were prepared by reaction of phenylphosphonic dichloride (PPD) with various bisphenols under pseudo-high dilution conditions via interfacial polycondensation. The yie...A series of cyclic (arylene phosphonate) oligomers were prepared by reaction of phenylphosphonic dichloride (PPD) with various bisphenols under pseudo-high dilution conditions via interfacial polycondensation. The yield of cyclic (arylene phosphonate) oligomers is over 85% by using hexadecyltrimethylammoniun bromide as phase transfer catalyst (PTC) at 0 'C . The structures of the cyclic oligomers were confirmed by a combination of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and IR analysis. These cyclic oligomers undergo facile ring-opening polymerization in the melt by using potassium 4,4'-biphenoxide as the initiator to give linear polyphosphonate. Free-radical ring-opening polymerization of cyclic(arylene phosphonate) oligomers containing sulfur linkages was also performed in the melt using 2,2'-dithiobis(benzothiazole) (DTB) as the initiator at 270 °C and the resulting polymer had a Mw, of 8 × 103 with a molecular weight distribution of 4. Ring-opening copolymerization of these cyclic oligomers with cyclic carbonate oligomers was also achieved. The average molecular weight of the resulting copolymer is higher than the corresponding homopolymer and the thermal stability of the copolymer is better than the corresponding homopolymer.展开更多
Porcine pancreas lipase (PPL) and PPL immobilized on narrow distributed micron-sized glass beads wereemployed successfully for the ring-opening polymerization of 5, 5-dimethyl-1, 3-dioxan-2-one (DTC) for the first tim...Porcine pancreas lipase (PPL) and PPL immobilized on narrow distributed micron-sized glass beads wereemployed successfully for the ring-opening polymerization of 5, 5-dimethyl-1, 3-dioxan-2-one (DTC) for the first time.Different polymerization conditions such as enzyme concentration and reaction temperature were studied. Immobilized PPLexhibits higher activity than native PPL. Along wth the increasing enzyme concentration, the molecular weigh of resultingPDTC decreases. PPL immobilized on narrow distributed micron-sized glass beads has outstanding recyclability. For thethird recycle time, immobilized PPL exhibits the highest catalytic activity and with high activity even after the fifth recyletime for the synthesis of PDTC. The ~1H-NMR spectra indicate that decarboxylation does not occur during the ring-openingpolymerization.展开更多
Highly active calcium chloride(CaCl2) doped Zn-Co^Ⅲdouble metal-cyanide(Ca-DMC) catalysts were firstly reported.Ca-DMCs presented a very higher polymer yield(54 kg polymer/g catalyst) at relative low temperatur...Highly active calcium chloride(CaCl2) doped Zn-Co^Ⅲdouble metal-cyanide(Ca-DMC) catalysts were firstly reported.Ca-DMCs presented a very higher polymer yield(54 kg polymer/g catalyst) at relative low temperature(80-115℃) toward ringopening polymerization(ROP) of propylene oxide(PO) than did DMC catalysts without modification.展开更多
Single component rare earth phenolates substituted by various alkyl groups have been prepared and the correlation between the aryloxides' structure and catalytic activity in the ring-opening polymerization of D,L-lac...Single component rare earth phenolates substituted by various alkyl groups have been prepared and the correlation between the aryloxides' structure and catalytic activity in the ring-opening polymerization of D,L-lactide has also been investigated.The catalytic activity of all rare earth aryloxides,characteristics of the ring-opening polymerization as well as polymerization kinetics and mechanism were investigated.The results showed that both phenolates' catalytic activities and polymerization characteristics changed regularly,keeping in good concordance with variations in substitutents' number on phenol and structure of aryloxide ligands.The stronger ability of electron-donation of alkyl groups,the higher catalytic activity.Moreover,the more numbers of substituted alkyl on phenyl ring,the higher catalytic activity.The analyses of polymer ends revealed that the polymerization proceeded via a coordination-acyl-oxygen bond cleavage-insertion mechanism.展开更多
Tetrahydrosalen ligand was employed in the synthesis of gadolinium complex. The ligand was deprotoned by LiBu, and the afforded lithium salt was reacted with anhydrous GdCl3 to produce the gadolinium complex through s...Tetrahydrosalen ligand was employed in the synthesis of gadolinium complex. The ligand was deprotoned by LiBu, and the afforded lithium salt was reacted with anhydrous GdCl3 to produce the gadolinium complex through salt metathesis. This complex was successfully used to initiate the ring-opening polymerization of ε-caprolactone. The initiation conditions in different temperature, monomer-to-initiator ratio and time were investigated. Under the condition: [ε-caprolactone]:[catalyst] = 600, 56 ℃, toluene: 2 ml, poly(ε-caprolactone) (PCL) with Mw = 11,2782 and PDI = 1.96 was achieved.展开更多
Cationic ring-opening polymerization of 3,3-bis(chloromethyl)oxacyclobutane catalyzed by BF3.OEt2 was carded out in ionic liquids [bmim]BF4 and [bmim]PF6. The influences of BCMO concentration and molar ratio of BCMO...Cationic ring-opening polymerization of 3,3-bis(chloromethyl)oxacyclobutane catalyzed by BF3.OEt2 was carded out in ionic liquids [bmim]BF4 and [bmim]PF6. The influences of BCMO concentration and molar ratio of BCMO/BF3.OEt2 on the molecular weights and yield of PBCMO were investigated. The polymerization in ionic liquids proceed to high conversions, although molecular weights are limited, similar to polymerization in organic solvent such as CH2Cl2. Follow a viewpoint of green chemistry, we feel ionic liquid [bmim]BF4 is superior to [bmim]PF6. Extracting [bmim]PF6 from the product using organic solvent as extractant limits its advantage as a green reaction media.展开更多
Norbornene derivatives exo,endo-2-[2-(3,5-di-tert-butyl-4-hydroxyphenoxy)-acetoxy]methyl-5-norbornene(M1) and 3,3,5,5-tetramethyl-4-piperidinyl 5-norbornene-exo,endo-2-carboxylate(M2)were synthesized and polymerized b...Norbornene derivatives exo,endo-2-[2-(3,5-di-tert-butyl-4-hydroxyphenoxy)-acetoxy]methyl-5-norbornene(M1) and 3,3,5,5-tetramethyl-4-piperidinyl 5-norbornene-exo,endo-2-carboxylate(M2)were synthesized and polymerized by RuCl_2(=CHPh)(PCy_3)_2 to prepare a novel kind of bi-functional polymer bearing sterically hindered phenol(SHP)and hindered amine(HLAS)groups via ring-opening metathesis polymerization(ROMP).The resulting copolymers were characterized by gel permeation chromatography(GPC),~1H-NMR and differen...展开更多
Ring-opening polymerization of trimethylene carbonate (TMC) with a rare earth calixarene compound as catalyst has been studied for the first time. The effect of TMC/Nd (molar ratio) and polymerization conditions were ...Ring-opening polymerization of trimethylene carbonate (TMC) with a rare earth calixarene compound as catalyst has been studied for the first time. The effect of TMC/Nd (molar ratio) and polymerization conditions were investigated in detail. It was found that calix[8]arene-neodymium is a highly effective catalyst for the bulk polymerization of TMC and gives high molecular weight (M-v = 60,000) polymer. The optimum conditions of TMC polymerization were found to be as follows:TMC/Nd (molar ratio) = 2,000, 80 degrees C, 16 h. The polymers were characterized by NMR, GPC and DSC. Studying the mechanism by NMR showed that the polymerization of TMC catalyzed by calix[8]arene-neodymium proceeds via a cationic mechanism.展开更多
The ring-opening polymerization of 1,4-dioxan-2-one (PDO) was carried out by lanthanum tris(2,6-di-tert-butyl-4- methylphenolate) (La(OAr)3) as novel single component initiaLor. The influences of polymerizatio...The ring-opening polymerization of 1,4-dioxan-2-one (PDO) was carried out by lanthanum tris(2,6-di-tert-butyl-4- methylphenolate) (La(OAr)3) as novel single component initiaLor. The influences of polymerization reaction temperature and the molar ratio of monomer to initiator on the monomer conversion and molecular weight of poly(1,4-dioxan-2-one) (PPDO) were explored. PPDO with high viscosity average molecular weight of 1.95×10^5 can be prepared at 40℃ when [PDO]/ [La(OAr)3] molar ratio was 800. Mechanism investigation shows that the polymerization proceeds through a "coordination- insertion" mechanism with selective rupture of acyl-oxygen be,nd of PDO.展开更多
The syntheses, structures and catalytic activities of two yttrium complexes supported by pyrrolide ligands are reported. Treatment of Y(N(Si Me3)2)3 with one equivalent of H3bptd(H3bptd = 1,9-bis(2-pyrrolyl)-2,...The syntheses, structures and catalytic activities of two yttrium complexes supported by pyrrolide ligands are reported. Treatment of Y(N(Si Me3)2)3 with one equivalent of H3bptd(H3bptd = 1,9-bis(2-pyrrolyl)-2,5,8-triazanona-1,8-diene) in THF gave a complex of composition [Y(bptd)(THF)]2(1). Reaction of Y(N(Si Me3)2)3 with one equivalent of H3tpa(H3tpa = tris(pyrrolyl-α-methyl)amine) in THF generated [Y(tpa)(THF)3](2) in good yield. Complexes 1and 2 have been characterized by single-crystal X-ray diffraction, elemental analyses and NMR spectroscopy. Complex 1 is dinuclear. The two metal centers are doubly bridged by two amine nitrogen atoms to form a Y–N–Y–N four-membered rhombus ring. The geometries of Y^3+ ions in 1and 2 are well described as pentagonal bipyramid and capped octahedron, respectively. The ring-opening polymerization reactions of ε-caprolactone initiated by 1 and 2, respectively, were investigated. They both exhibited good catalytic activity for the polymerization of ε-caprolactone. All of the obtained polymers have high molecular weights and relatively narrower PDIs. The polymers generated by 2 possessed polydispersity close to 1.1. The good catalytic activities of 1 and 2 reveal their potential applications in polymer industry.展开更多
Ring-opening polymerization of ε-caprolactone (CL) catalyzed bylanthanocenes, O(C_2H_4C_5H_3CH_3)_2YCl (Cat-YCl) and Me_2Si[(CH_3)_3SiC_5H_3]_2NdCl(Cat-NdCl) has been carried out for the first time. It has been found...Ring-opening polymerization of ε-caprolactone (CL) catalyzed bylanthanocenes, O(C_2H_4C_5H_3CH_3)_2YCl (Cat-YCl) and Me_2Si[(CH_3)_3SiC_5H_3]_2NdCl(Cat-NdCl) has been carried out for the first time. It has been found that both yttroceneand neodymocene are very efficient to catalyze the polymerization of CL, giving high molec-ular weight poly (ε-caprolactone) (PCL ). The effects of [cat] / [ε- CL] molar ratio, polymeriza-tion temperature and time, as well as solvents were investigated and polymerization tem-perature is found to be the most important factor affecting the polymerization. The bulkpolymerization gives higher molecular weight PCL and higher conversion than that in solu-tion polymerization. NaBPh_4 was found to promote the polymerization of ε-caprolactone,and thus to increase both the polymerization conversion and MW of poly (ε- caprolactone ).展开更多
The ring-opening copolymerization of adipic anhydride with propylene oxide was carried out with yttrium triflates as a catalyst. Poly(propylene adipate) could be synthesized by controlling the copolymerization condi...The ring-opening copolymerization of adipic anhydride with propylene oxide was carried out with yttrium triflates as a catalyst. Poly(propylene adipate) could be synthesized by controlling the copolymerization conditions. The copolymerization procedure was tracked by ^1H NMR analyses.展开更多
Ti-incorporated mesoporous silica materials with pore diameters of 3-4 nm have been prepared via the co-hydrolysis and co-condensation reactions, that is the sol-gel reactions, of titanium (IV) tetrabutoxide and tetra...Ti-incorporated mesoporous silica materials with pore diameters of 3-4 nm have been prepared via the co-hydrolysis and co-condensation reactions, that is the sol-gel reactions, of titanium (IV) tetrabutoxide and tetraethylorthosilicate in the presence of tartaric acid as template, followed by extraction with ethanol to remove the templatemolecules. The materials were characterized in detail by Fourier transform infrared spectroscopy, nitrogen adsorption-desorption test, powder X-ray diffraction, transmission electron microscopy and X-ray energy dispersive spectroscopy. Theresults indicate that the Ti-containing silica materials have large specific surface areas (ca. 1200 m^2 g^(-1)) and pore volumes(ca. 0.900 cm^3 g^(-1)). The mesoporosity arises from disordered interconnecting channels or pores. The Ti-incorporated silicasexhibit catalytic activity for the ring-opening polymerization of ε-caprolactone, otherwise, the pure mesoporous silicamaterial shows no catalytic activity under the identical conditions.展开更多
Synthesis and ring-opening reaction of TADDOL analogue with cyclopropane as chiral backbone were described. A plausible ring-opening and carbonium ion rearrangement mechanism have been proposed.
η^5-Pentamethylcyclopentadienyl-(η^5-exo-tricyclo[5.2.1.0^2,6]deca-2,5,8-trien-6-yl) iron(3) was synthesized and characterized by ^1H NMR, ^13C NMR, MS, elemental analysis, IR, UV and X-ray diffraction analysis....η^5-Pentamethylcyclopentadienyl-(η^5-exo-tricyclo[5.2.1.0^2,6]deca-2,5,8-trien-6-yl) iron(3) was synthesized and characterized by ^1H NMR, ^13C NMR, MS, elemental analysis, IR, UV and X-ray diffraction analysis. Compound 3 was polymerized with ring-opening metathesis polymerization(ROMP) initiator (PCy3)2Cl2Ru=CHPh. ^1H NMR and IR spectra revealed the presence of CH=CH units in the polymer and supported the ROMP mechanism. GPC analysis of the polymer showed that the weight-average molecular weights(Mw) was 5967, and the polydispersity index(PDl) was 1.16. The polymer was also investigated by UV and cyclic voltammetry.展开更多
An unusual reductive ring-opening reaction of phthalimide with sodium hydride in anhydrous DMF was observed for the first time. The presumed mechanism was described in detail.
基金This work was financially supported by the Special Fund for Major State Basic Research Project(G1999064801)the National Natural Science Foundation of China(Nos.20174033 and 20434020)
文摘In this paper,ring-opening polymerization of trimethylene carbonate(TMC)with rare earth(Nd,Y,La)ρ-tert- butylcalix[n]arene(n=4,6,and 8)complexes as catalysts has been studied.Poly(trimethylene carbonate)(PTMC)with M_v of 21,400 was produced by bulk polymerization under the conditions as follows:[TMC]_0/[Nd](molar ratio)=1000,80℃, 8 h.Mechanism study reveals that the polymerization proceeds via a coordination mechanism.
基金supported by the National Natural Science Foundation of China.(Grant No.20174033 and 20254001)the Special Found for Major State Basic Research Project(Grant No.G1999064801)the Committee of Science and Technology of Zhejiang Province.
文摘The ring-opening polymerization of e-caprolactone (CL) initiated by novel single lanthanide tris(4-tert-butylphenolate)s [Ln(OTBP)3] is reported. Single-component La(OTBP)3 can effectively prepare polycaprolactone (PCL) with over 90% yield and viscosity average molecular weight about 60 x 10 under quite mild conditions: molar ratio of CL to initiator is 1000, 60 C, 2 h in toluene. Mechanism study indicates that the monomer inserts into the growing chain via the break of acyl-oxygen bond of CL.
基金This work was financially supported by the Key Program of National Natural Science Foundation of China(No.G 20434020)the Special Funds for Major Basic Research Projects(No.G 2005 CB623802)the Committee of Science and Technology of Zhejiang Province.
文摘Ring-opening polymerization of ε-caprolactone has been carried out by using rare earth Schiff base complexes: lanthanide tris(N-phenyl-3,5-di-t-butylsalicylaldiminato)s [Ln(OPBS)3] as single component catalyst for the first time. The influences of different rare earth elements, monomer and catalyst concentration as well as reaction time on the polymerization were investigated. Mechanism studies showed that monomer inserts into the active site with the acyl-oxygen bond scission rather than the break of alkyl-oxygen bond.
基金This project was supported by the National Natural Science Foundation of China (No. 20084001).
文摘A series of cyclic (arylene phosphonate) oligomers were prepared by reaction of phenylphosphonic dichloride (PPD) with various bisphenols under pseudo-high dilution conditions via interfacial polycondensation. The yield of cyclic (arylene phosphonate) oligomers is over 85% by using hexadecyltrimethylammoniun bromide as phase transfer catalyst (PTC) at 0 'C . The structures of the cyclic oligomers were confirmed by a combination of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and IR analysis. These cyclic oligomers undergo facile ring-opening polymerization in the melt by using potassium 4,4'-biphenoxide as the initiator to give linear polyphosphonate. Free-radical ring-opening polymerization of cyclic(arylene phosphonate) oligomers containing sulfur linkages was also performed in the melt using 2,2'-dithiobis(benzothiazole) (DTB) as the initiator at 270 °C and the resulting polymer had a Mw, of 8 × 103 with a molecular weight distribution of 4. Ring-opening copolymerization of these cyclic oligomers with cyclic carbonate oligomers was also achieved. The average molecular weight of the resulting copolymer is higher than the corresponding homopolymer and the thermal stability of the copolymer is better than the corresponding homopolymer.
基金The authors are grateful for the financial support of the National Natural Science Foundation of China (No. 20104005) and Hubei Province Natural Science Foundation of China (No. 2001B053) and a grant from National Key Fundamental Research Program of Chin
文摘Porcine pancreas lipase (PPL) and PPL immobilized on narrow distributed micron-sized glass beads wereemployed successfully for the ring-opening polymerization of 5, 5-dimethyl-1, 3-dioxan-2-one (DTC) for the first time.Different polymerization conditions such as enzyme concentration and reaction temperature were studied. Immobilized PPLexhibits higher activity than native PPL. Along wth the increasing enzyme concentration, the molecular weigh of resultingPDTC decreases. PPL immobilized on narrow distributed micron-sized glass beads has outstanding recyclability. For thethird recycle time, immobilized PPL exhibits the highest catalytic activity and with high activity even after the fifth recyletime for the synthesis of PDTC. The ~1H-NMR spectra indicate that decarboxylation does not occur during the ring-openingpolymerization.
基金the financial supports of the National Science Foundation of the People's Republic of China(No.20704034)Provincial Natural Science Foundation of Zhejiang(No.Y4090047)
文摘Highly active calcium chloride(CaCl2) doped Zn-Co^Ⅲdouble metal-cyanide(Ca-DMC) catalysts were firstly reported.Ca-DMCs presented a very higher polymer yield(54 kg polymer/g catalyst) at relative low temperature(80-115℃) toward ringopening polymerization(ROP) of propylene oxide(PO) than did DMC catalysts without modification.
基金Funded by the Natural Science Foundation of Shanxi Province (No.2006011069)the Opening Foundation of Key Laboratory of Shanxi Province (No.2009011059-7)
文摘Single component rare earth phenolates substituted by various alkyl groups have been prepared and the correlation between the aryloxides' structure and catalytic activity in the ring-opening polymerization of D,L-lactide has also been investigated.The catalytic activity of all rare earth aryloxides,characteristics of the ring-opening polymerization as well as polymerization kinetics and mechanism were investigated.The results showed that both phenolates' catalytic activities and polymerization characteristics changed regularly,keeping in good concordance with variations in substitutents' number on phenol and structure of aryloxide ligands.The stronger ability of electron-donation of alkyl groups,the higher catalytic activity.Moreover,the more numbers of substituted alkyl on phenyl ring,the higher catalytic activity.The analyses of polymer ends revealed that the polymerization proceeded via a coordination-acyl-oxygen bond cleavage-insertion mechanism.
基金The authors acknowledge the financial supports from National Nature Science Foundation(Nos. 20674071, 20774078 and 20434020) ;the Special Funds for Major State Basic Research Projects (No.2005CB623802).
文摘Tetrahydrosalen ligand was employed in the synthesis of gadolinium complex. The ligand was deprotoned by LiBu, and the afforded lithium salt was reacted with anhydrous GdCl3 to produce the gadolinium complex through salt metathesis. This complex was successfully used to initiate the ring-opening polymerization of ε-caprolactone. The initiation conditions in different temperature, monomer-to-initiator ratio and time were investigated. Under the condition: [ε-caprolactone]:[catalyst] = 600, 56 ℃, toluene: 2 ml, poly(ε-caprolactone) (PCL) with Mw = 11,2782 and PDI = 1.96 was achieved.
基金financially supported by the Key Project of Chinese Ministry of Education(No.105075)the National Natural Science Foundation of China(No.20503016).
文摘Cationic ring-opening polymerization of 3,3-bis(chloromethyl)oxacyclobutane catalyzed by BF3.OEt2 was carded out in ionic liquids [bmim]BF4 and [bmim]PF6. The influences of BCMO concentration and molar ratio of BCMO/BF3.OEt2 on the molecular weights and yield of PBCMO were investigated. The polymerization in ionic liquids proceed to high conversions, although molecular weights are limited, similar to polymerization in organic solvent such as CH2Cl2. Follow a viewpoint of green chemistry, we feel ionic liquid [bmim]BF4 is superior to [bmim]PF6. Extracting [bmim]PF6 from the product using organic solvent as extractant limits its advantage as a green reaction media.
基金Sasakawa Scientific Research Grant from the Japan Science Society.
文摘Norbornene derivatives exo,endo-2-[2-(3,5-di-tert-butyl-4-hydroxyphenoxy)-acetoxy]methyl-5-norbornene(M1) and 3,3,5,5-tetramethyl-4-piperidinyl 5-norbornene-exo,endo-2-carboxylate(M2)were synthesized and polymerized by RuCl_2(=CHPh)(PCy_3)_2 to prepare a novel kind of bi-functional polymer bearing sterically hindered phenol(SHP)and hindered amine(HLAS)groups via ring-opening metathesis polymerization(ROMP).The resulting copolymers were characterized by gel permeation chromatography(GPC),~1H-NMR and differen...
基金This work was supported by the National Natural Science Foundation of China (No. 29674027, No. 29844002), the Ministry of National Education (G98402) and Organometallic Laboratory of Institute of Organic Chemistry of Chinese Academy of Sciences.
文摘Ring-opening polymerization of trimethylene carbonate (TMC) with a rare earth calixarene compound as catalyst has been studied for the first time. The effect of TMC/Nd (molar ratio) and polymerization conditions were investigated in detail. It was found that calix[8]arene-neodymium is a highly effective catalyst for the bulk polymerization of TMC and gives high molecular weight (M-v = 60,000) polymer. The optimum conditions of TMC polymerization were found to be as follows:TMC/Nd (molar ratio) = 2,000, 80 degrees C, 16 h. The polymers were characterized by NMR, GPC and DSC. Studying the mechanism by NMR showed that the polymerization of TMC catalyzed by calix[8]arene-neodymium proceeds via a cationic mechanism.
基金Supported by the National Natural Science Foundation of China( No.2 0 174 0 33and2 0 2 5 4 0 0 1) and the Ministry of Sci-ence and Technology of China( No.19990 6 4 80 1)
基金This work was financially supported by the financial support of National Natural Science Foundation of China (No. 20434020)
文摘The ring-opening polymerization of 1,4-dioxan-2-one (PDO) was carried out by lanthanum tris(2,6-di-tert-butyl-4- methylphenolate) (La(OAr)3) as novel single component initiaLor. The influences of polymerization reaction temperature and the molar ratio of monomer to initiator on the monomer conversion and molecular weight of poly(1,4-dioxan-2-one) (PPDO) were explored. PPDO with high viscosity average molecular weight of 1.95×10^5 can be prepared at 40℃ when [PDO]/ [La(OAr)3] molar ratio was 800. Mechanism investigation shows that the polymerization proceeds through a "coordination- insertion" mechanism with selective rupture of acyl-oxygen be,nd of PDO.
基金Supported by NNSFC(21272167)the Priority Academic Program Development of Jiangsu Higher Education Institution,and KLSLRC(KLSLRC-KF-13-HX-1)
文摘The syntheses, structures and catalytic activities of two yttrium complexes supported by pyrrolide ligands are reported. Treatment of Y(N(Si Me3)2)3 with one equivalent of H3bptd(H3bptd = 1,9-bis(2-pyrrolyl)-2,5,8-triazanona-1,8-diene) in THF gave a complex of composition [Y(bptd)(THF)]2(1). Reaction of Y(N(Si Me3)2)3 with one equivalent of H3tpa(H3tpa = tris(pyrrolyl-α-methyl)amine) in THF generated [Y(tpa)(THF)3](2) in good yield. Complexes 1and 2 have been characterized by single-crystal X-ray diffraction, elemental analyses and NMR spectroscopy. Complex 1 is dinuclear. The two metal centers are doubly bridged by two amine nitrogen atoms to form a Y–N–Y–N four-membered rhombus ring. The geometries of Y^3+ ions in 1and 2 are well described as pentagonal bipyramid and capped octahedron, respectively. The ring-opening polymerization reactions of ε-caprolactone initiated by 1 and 2, respectively, were investigated. They both exhibited good catalytic activity for the polymerization of ε-caprolactone. All of the obtained polymers have high molecular weights and relatively narrower PDIs. The polymers generated by 2 possessed polydispersity close to 1.1. The good catalytic activities of 1 and 2 reveal their potential applications in polymer industry.
文摘Ring-opening polymerization of ε-caprolactone (CL) catalyzed bylanthanocenes, O(C_2H_4C_5H_3CH_3)_2YCl (Cat-YCl) and Me_2Si[(CH_3)_3SiC_5H_3]_2NdCl(Cat-NdCl) has been carried out for the first time. It has been found that both yttroceneand neodymocene are very efficient to catalyze the polymerization of CL, giving high molec-ular weight poly (ε-caprolactone) (PCL ). The effects of [cat] / [ε- CL] molar ratio, polymeriza-tion temperature and time, as well as solvents were investigated and polymerization tem-perature is found to be the most important factor affecting the polymerization. The bulkpolymerization gives higher molecular weight PCL and higher conversion than that in solu-tion polymerization. NaBPh_4 was found to promote the polymerization of ε-caprolactone,and thus to increase both the polymerization conversion and MW of poly (ε- caprolactone ).
基金Supported by the National Natural Science Foundation of China(Nos.20704036, Key Program 20434020)the State Basic Research Projects of China(No.2005CB623802)
文摘The ring-opening copolymerization of adipic anhydride with propylene oxide was carried out with yttrium triflates as a catalyst. Poly(propylene adipate) could be synthesized by controlling the copolymerization conditions. The copolymerization procedure was tracked by ^1H NMR analyses.
基金This work was supported by the National Natural Science Foundation of China (No. 29874002), and the Outstanding Young Scientist Award from the National Natural Science Foundation of China (No. 29825504).
文摘Ti-incorporated mesoporous silica materials with pore diameters of 3-4 nm have been prepared via the co-hydrolysis and co-condensation reactions, that is the sol-gel reactions, of titanium (IV) tetrabutoxide and tetraethylorthosilicate in the presence of tartaric acid as template, followed by extraction with ethanol to remove the templatemolecules. The materials were characterized in detail by Fourier transform infrared spectroscopy, nitrogen adsorption-desorption test, powder X-ray diffraction, transmission electron microscopy and X-ray energy dispersive spectroscopy. Theresults indicate that the Ti-containing silica materials have large specific surface areas (ca. 1200 m^2 g^(-1)) and pore volumes(ca. 0.900 cm^3 g^(-1)). The mesoporosity arises from disordered interconnecting channels or pores. The Ti-incorporated silicasexhibit catalytic activity for the ring-opening polymerization of ε-caprolactone, otherwise, the pure mesoporous silicamaterial shows no catalytic activity under the identical conditions.
基金founded by the National Natural Science Foundation of China(No.20472111).
文摘Synthesis and ring-opening reaction of TADDOL analogue with cyclopropane as chiral backbone were described. A plausible ring-opening and carbonium ion rearrangement mechanism have been proposed.
基金Supported by the National Natural Science Foundation of China(Nos.20574036,20672058 and 20721062)Specialized Research Fund for the Doctoral Program of Higher Education,China(No.20070055020)the Program for New Century Excel-lent Talents in University(No.NCET-04-0229)
文摘η^5-Pentamethylcyclopentadienyl-(η^5-exo-tricyclo[5.2.1.0^2,6]deca-2,5,8-trien-6-yl) iron(3) was synthesized and characterized by ^1H NMR, ^13C NMR, MS, elemental analysis, IR, UV and X-ray diffraction analysis. Compound 3 was polymerized with ring-opening metathesis polymerization(ROMP) initiator (PCy3)2Cl2Ru=CHPh. ^1H NMR and IR spectra revealed the presence of CH=CH units in the polymer and supported the ROMP mechanism. GPC analysis of the polymer showed that the weight-average molecular weights(Mw) was 5967, and the polydispersity index(PDl) was 1.16. The polymer was also investigated by UV and cyclic voltammetry.
文摘An unusual reductive ring-opening reaction of phthalimide with sodium hydride in anhydrous DMF was observed for the first time. The presumed mechanism was described in detail.