In this work, we solve a long-standing open problem: Is it true that the convergence rate of the Lions' Robin-Robin nonoverlapping domain decomposition (DD) method can be constant, independent of the mesh size h?...In this work, we solve a long-standing open problem: Is it true that the convergence rate of the Lions' Robin-Robin nonoverlapping domain decomposition (DD) method can be constant, independent of the mesh size h? We closed this old problem with a positive answer. Our theory is also verified by numerical tests.展开更多
A new numerical method based on locally modified Cartesian meshes is proposed for solving a coupled system of a fluid flow and a porous media flow.The fluid flow is modeled by the Stokes equations while the porous med...A new numerical method based on locally modified Cartesian meshes is proposed for solving a coupled system of a fluid flow and a porous media flow.The fluid flow is modeled by the Stokes equations while the porous media flow is modeled by Darcy’s law.The method is based on a Robin-Robin domain decomposition method with a Cartesian mesh with local modifications near the interface.Some computational examples are presented and discussed.展开更多
This paper is concerned with the elliptic problems with nonlinear StefanBoltzmann boundary condition.By combining with the monotone method,the RobinRobin domain decomposition methods are proposed to decouple the nonli...This paper is concerned with the elliptic problems with nonlinear StefanBoltzmann boundary condition.By combining with the monotone method,the RobinRobin domain decomposition methods are proposed to decouple the nonlinear interface and boundary condition.The monotone properties are verified for both the multiplicative and the additive domain decomposition methods.The numerical results confirm the theoretical analysis.展开更多
文摘In this work, we solve a long-standing open problem: Is it true that the convergence rate of the Lions' Robin-Robin nonoverlapping domain decomposition (DD) method can be constant, independent of the mesh size h? We closed this old problem with a positive answer. Our theory is also verified by numerical tests.
基金supported in part by the US-NIH grant R01GM096195supported by the US AFSOR grant FA9550-09-1-0520the NCSU Innovation Seed grant.
文摘A new numerical method based on locally modified Cartesian meshes is proposed for solving a coupled system of a fluid flow and a porous media flow.The fluid flow is modeled by the Stokes equations while the porous media flow is modeled by Darcy’s law.The method is based on a Robin-Robin domain decomposition method with a Cartesian mesh with local modifications near the interface.Some computational examples are presented and discussed.
基金supported by the National Basic Research Program(2005CB321701)111 project grant(B08018)+5 种基金supported by NSFC Tianyuan Fund for Mathematics(10826105)in part by Shanghai Key Laboratory of Intelligent Information Processing(IIPL-09-003)supported by the Shanghai Natural Science Foundation(07JC14001)supported by the Global COE Programsupported in part by National 863 Program of China(2009AA012201)supported in part by Grants-in-Aid for Scientific Research(20654011,21340021)from Japan Society for the Promotion of Science.
文摘This paper is concerned with the elliptic problems with nonlinear StefanBoltzmann boundary condition.By combining with the monotone method,the RobinRobin domain decomposition methods are proposed to decouple the nonlinear interface and boundary condition.The monotone properties are verified for both the multiplicative and the additive domain decomposition methods.The numerical results confirm the theoretical analysis.