Contralateral C7(cC7) root transfer to the healthy side is the main method for the treatment of brachial plexus root injury. A relatively new modification of this method involves cC7 root transfer to the lower trunk...Contralateral C7(cC7) root transfer to the healthy side is the main method for the treatment of brachial plexus root injury. A relatively new modification of this method involves cC7 root transfer to the lower trunk via the prespinal route. In the current study, we examined the effectiveness of this method using electrophysiological and histological analyses. To this end, we used a rat model of total brachial plexus injury, and cC7 root transfer was performed to either the lower trunk via the prespinal route or the median nerve via a subcutaneous tunnel to repair the injury. At 4, 8 and 12 weeks, the grasping test was used to measure the changes in grasp strength of the injured forepaw. Electrophysiological changes were examined in the flexor digitorum superficialis muscle. The change in the wet weight of the forearm flexor was also measured. Atrophy of the flexor digitorum superficialis muscle was assessed by hematoxylin-eosin staining. Toluidine blue staining was used to count the number of myelinated nerve fibers in the injured nerves. Compared with the traditional method, cC7 root transfer to the lower trunk via the prespinal route increased grasp strength of the injured forepaw, increased the compound muscle action potential maximum amplitude, shortened latency, substantially restored tetanic contraction of the forearm flexor muscles, increased the wet weight of the muscle, reduced atrophy of the flexor digitorum superficialis muscle, and increased the number of myelinated nerve fibers. These findings demonstrate that for finger flexion functional recovery in rats with total brachial plexus injury, transfer of the cC7 root to the lower trunk via the prespinal route is more effective than transfer to the median nerve via subcutaneous tunnel.展开更多
Experimental rats with root avulsion of the brachial plexus upper trunk were treated with the improved C34 transfer for neurotization of 05-6. Results showed that Terzis grooming test scores were significantly increas...Experimental rats with root avulsion of the brachial plexus upper trunk were treated with the improved C34 transfer for neurotization of 05-6. Results showed that Terzis grooming test scores were significantly increased at 6 months after treatment, the latency of C5-6 motor evoked potential was gradually shortened, and the amplitude was gradually increased. The rate of C3 instead of C5 and the C4 + phrenic nerve instead of C6 myelinated nerve fibers crossing through the anastomotic stoma was approximately 80%. Myelinated nerve fibers were arranged loosely but the thickness of the myelin sheath was similar to that of the healthy side. In clinical applications, 39 patients with root avulsion of the brachial plexus upper trunk were followed for 6 months to 4.5 years after treatment using the improved C3 instead of C5 nerve root transfer and C4 nerve root and phrenic nerve instead of C6 nerve root transfer. Results showed that the strength of the brachial biceps and deltoid muscles recovered to level IIHV, scapular muscle to level Ill-W, latissimus dorsi and pectoralis major muscles to above level Ⅲ, and the brachial triceps muscle to level 0 Ill. Results showed that the improved 03-4 transfer for root avulsion of the brachial plexus upper trunk in animal models is similar to clinical findings and that C3-4 and the phrenic nerve transfer for neurotization of C5-6 can innervate the avulsed brachial plexus upper trunk and promote the recovery of nerve function in the upper extremity.展开更多
为探讨不同埋干深度对嫁接楸树根系生长特性的影响,选用无性系楸树品种中的中豫楸1号作为试验研究对象,共设置8,16,24,32,40 cm 5个埋干深度小组,对各个埋干深度小组楸树苗的苗高、直径、根系数量、根系长度、根系生物量数据进行测定。...为探讨不同埋干深度对嫁接楸树根系生长特性的影响,选用无性系楸树品种中的中豫楸1号作为试验研究对象,共设置8,16,24,32,40 cm 5个埋干深度小组,对各个埋干深度小组楸树苗的苗高、直径、根系数量、根系长度、根系生物量数据进行测定。结果发现,不同埋干深度处理小组间的粗根、中根和细根的数量和长度之间差异不显著(P<0.05),但是随着埋干深度的加深,楸树苗粗根的生物量呈递减趋势,以埋干深度为24 cm组的生物量最高;不同埋干处理小组的粗根、中根、细根的生物量主要集中在0~40 cm的嫁接根下根桩范围;随着埋干深度的不断加深,深层土壤中的生物量则越少。展开更多
基金supported by the National Natural Science Foundation of China,No.81572127
文摘Contralateral C7(cC7) root transfer to the healthy side is the main method for the treatment of brachial plexus root injury. A relatively new modification of this method involves cC7 root transfer to the lower trunk via the prespinal route. In the current study, we examined the effectiveness of this method using electrophysiological and histological analyses. To this end, we used a rat model of total brachial plexus injury, and cC7 root transfer was performed to either the lower trunk via the prespinal route or the median nerve via a subcutaneous tunnel to repair the injury. At 4, 8 and 12 weeks, the grasping test was used to measure the changes in grasp strength of the injured forepaw. Electrophysiological changes were examined in the flexor digitorum superficialis muscle. The change in the wet weight of the forearm flexor was also measured. Atrophy of the flexor digitorum superficialis muscle was assessed by hematoxylin-eosin staining. Toluidine blue staining was used to count the number of myelinated nerve fibers in the injured nerves. Compared with the traditional method, cC7 root transfer to the lower trunk via the prespinal route increased grasp strength of the injured forepaw, increased the compound muscle action potential maximum amplitude, shortened latency, substantially restored tetanic contraction of the forearm flexor muscles, increased the wet weight of the muscle, reduced atrophy of the flexor digitorum superficialis muscle, and increased the number of myelinated nerve fibers. These findings demonstrate that for finger flexion functional recovery in rats with total brachial plexus injury, transfer of the cC7 root to the lower trunk via the prespinal route is more effective than transfer to the median nerve via subcutaneous tunnel.
基金supported by the Military Medicine and Health Research Foundation of China,No.06M098, CWS11J240
文摘Experimental rats with root avulsion of the brachial plexus upper trunk were treated with the improved C34 transfer for neurotization of 05-6. Results showed that Terzis grooming test scores were significantly increased at 6 months after treatment, the latency of C5-6 motor evoked potential was gradually shortened, and the amplitude was gradually increased. The rate of C3 instead of C5 and the C4 + phrenic nerve instead of C6 myelinated nerve fibers crossing through the anastomotic stoma was approximately 80%. Myelinated nerve fibers were arranged loosely but the thickness of the myelin sheath was similar to that of the healthy side. In clinical applications, 39 patients with root avulsion of the brachial plexus upper trunk were followed for 6 months to 4.5 years after treatment using the improved C3 instead of C5 nerve root transfer and C4 nerve root and phrenic nerve instead of C6 nerve root transfer. Results showed that the strength of the brachial biceps and deltoid muscles recovered to level IIHV, scapular muscle to level Ill-W, latissimus dorsi and pectoralis major muscles to above level Ⅲ, and the brachial triceps muscle to level 0 Ill. Results showed that the improved 03-4 transfer for root avulsion of the brachial plexus upper trunk in animal models is similar to clinical findings and that C3-4 and the phrenic nerve transfer for neurotization of C5-6 can innervate the avulsed brachial plexus upper trunk and promote the recovery of nerve function in the upper extremity.
文摘为探讨不同埋干深度对嫁接楸树根系生长特性的影响,选用无性系楸树品种中的中豫楸1号作为试验研究对象,共设置8,16,24,32,40 cm 5个埋干深度小组,对各个埋干深度小组楸树苗的苗高、直径、根系数量、根系长度、根系生物量数据进行测定。结果发现,不同埋干深度处理小组间的粗根、中根和细根的数量和长度之间差异不显著(P<0.05),但是随着埋干深度的加深,楸树苗粗根的生物量呈递减趋势,以埋干深度为24 cm组的生物量最高;不同埋干处理小组的粗根、中根、细根的生物量主要集中在0~40 cm的嫁接根下根桩范围;随着埋干深度的不断加深,深层土壤中的生物量则越少。