The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attr...The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attribute importance,Skowron discernibility matrix,and information entropy,struggle to effectively manages multiple uncertainties simultaneously in HDISs like the precise measurement of disparities between nominal attribute values,and attributes with fuzzy boundaries and abnormal values.In order to address the aforementioned issues,this paper delves into the study of attribute reduction withinHDISs.First of all,a novel metric based on the decision attribute is introduced to solve the problem of accurately measuring the differences between nominal attribute values.The newly introduced distance metric has been christened the supervised distance that can effectively quantify the differences between the nominal attribute values.Then,based on the newly developed metric,a novel fuzzy relationship is defined from the perspective of“feedback on parity of attribute values to attribute sets”.This new fuzzy relationship serves as a valuable tool in addressing the challenges posed by abnormal attribute values.Furthermore,leveraging the newly introduced fuzzy relationship,the fuzzy conditional information entropy is defined as a solution to the challenges posed by fuzzy attributes.It effectively quantifies the uncertainty associated with fuzzy attribute values,thereby providing a robust framework for handling fuzzy information in hybrid information systems.Finally,an algorithm for attribute reduction utilizing the fuzzy conditional information entropy is presented.The experimental results on 12 datasets show that the average reduction rate of our algorithm reaches 84.04%,and the classification accuracy is improved by 3.91%compared to the original dataset,and by an average of 11.25%compared to the other 9 state-of-the-art reduction algorithms.The comprehensive analysis of these research results clearly indicates that our algorithm is highly effective in managing the intricate uncertainties inherent in hybrid data.展开更多
To improve the efficiency of the attribute reduction, we present an attribute reduction algorithm based on background knowledge and information entropy by making use of background knowledge from research fields. Under...To improve the efficiency of the attribute reduction, we present an attribute reduction algorithm based on background knowledge and information entropy by making use of background knowledge from research fields. Under the condition of known background knowledge, the algorithm can not only greatly improve the efficiency of attribute reduction, but also avoid the defection of information entropy partial to attribute with much value. The experimental result verifies that the algorithm is effective. In the end, the algorithm produces better results when applied in the classification of the star spectra data.展开更多
It is helpful for people to understand the essence of rough set theory to study the concepts and operations of rough set theory from its information view. In this paper we address knowledge expression and knowledge re...It is helpful for people to understand the essence of rough set theory to study the concepts and operations of rough set theory from its information view. In this paper we address knowledge expression and knowledge reduction in incomplete infolvnation systems from the information view of rough set theory. First, by extending information entropy-based measures in complete information systems, two new measures of incomplete entropy and incomplete conditional entropy are presented for incomplete information systems. And then, based on these measures the problem of knowledge reduction in incomplete information systems is analyzed and the reduct definitions in incomplete information system and incomplete decision table are proposed respectively. Finally, the reduct definitions based on incomplete entropy and the reduct definitions based on similarity relation are compared. Two equivalent relationships between them are proved by theorems and an in equivalent relationship between them is illustrated by an example. The work of this paper extends the research of rough set theory from information view to incomplete information systems and establishes the theoretical basis for seeking efficient algorithm of knowledge acquisition in incomplete information systems.展开更多
Rough Set is a valid mathematical theory developed in recent years, which has been applied successfully in such fields as machine learning, data mining, intelligent data analyzing and control algorithm acquiring. In t...Rough Set is a valid mathematical theory developed in recent years, which has been applied successfully in such fields as machine learning, data mining, intelligent data analyzing and control algorithm acquiring. In this paper, the authors discuss the reduction of knowledge using conditional entropy in rough set theory. First, the changing tendency of the conditional entropy of decision attributes giving condition attributes is studied from the viewpoint of information. Next, a new reduction algorithm based on conditional entropy is developed. Furthermore, our simulation results show that the algorithm can find the minimal reduction in most cases.展开更多
基金Anhui Province Natural Science Research Project of Colleges and Universities(2023AH040321)Excellent Scientific Research and Innovation Team of Anhui Colleges(2022AH010098).
文摘The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attribute importance,Skowron discernibility matrix,and information entropy,struggle to effectively manages multiple uncertainties simultaneously in HDISs like the precise measurement of disparities between nominal attribute values,and attributes with fuzzy boundaries and abnormal values.In order to address the aforementioned issues,this paper delves into the study of attribute reduction withinHDISs.First of all,a novel metric based on the decision attribute is introduced to solve the problem of accurately measuring the differences between nominal attribute values.The newly introduced distance metric has been christened the supervised distance that can effectively quantify the differences between the nominal attribute values.Then,based on the newly developed metric,a novel fuzzy relationship is defined from the perspective of“feedback on parity of attribute values to attribute sets”.This new fuzzy relationship serves as a valuable tool in addressing the challenges posed by abnormal attribute values.Furthermore,leveraging the newly introduced fuzzy relationship,the fuzzy conditional information entropy is defined as a solution to the challenges posed by fuzzy attributes.It effectively quantifies the uncertainty associated with fuzzy attribute values,thereby providing a robust framework for handling fuzzy information in hybrid information systems.Finally,an algorithm for attribute reduction utilizing the fuzzy conditional information entropy is presented.The experimental results on 12 datasets show that the average reduction rate of our algorithm reaches 84.04%,and the classification accuracy is improved by 3.91%compared to the original dataset,and by an average of 11.25%compared to the other 9 state-of-the-art reduction algorithms.The comprehensive analysis of these research results clearly indicates that our algorithm is highly effective in managing the intricate uncertainties inherent in hybrid data.
基金Supported by the National Natural Science Foundation of China(No. 60573075), the National High Technology Research and Development Program of China (No. 2003AA133060) and the Natural Science Foundation of Shanxi Province (No. 200601104).
文摘To improve the efficiency of the attribute reduction, we present an attribute reduction algorithm based on background knowledge and information entropy by making use of background knowledge from research fields. Under the condition of known background knowledge, the algorithm can not only greatly improve the efficiency of attribute reduction, but also avoid the defection of information entropy partial to attribute with much value. The experimental result verifies that the algorithm is effective. In the end, the algorithm produces better results when applied in the classification of the star spectra data.
基金Sponsored by the Youth Natural Science Foundation of Yantai Normal University.
文摘It is helpful for people to understand the essence of rough set theory to study the concepts and operations of rough set theory from its information view. In this paper we address knowledge expression and knowledge reduction in incomplete infolvnation systems from the information view of rough set theory. First, by extending information entropy-based measures in complete information systems, two new measures of incomplete entropy and incomplete conditional entropy are presented for incomplete information systems. And then, based on these measures the problem of knowledge reduction in incomplete information systems is analyzed and the reduct definitions in incomplete information system and incomplete decision table are proposed respectively. Finally, the reduct definitions based on incomplete entropy and the reduct definitions based on similarity relation are compared. Two equivalent relationships between them are proved by theorems and an in equivalent relationship between them is illustrated by an example. The work of this paper extends the research of rough set theory from information view to incomplete information systems and establishes the theoretical basis for seeking efficient algorithm of knowledge acquisition in incomplete information systems.
文摘Rough Set is a valid mathematical theory developed in recent years, which has been applied successfully in such fields as machine learning, data mining, intelligent data analyzing and control algorithm acquiring. In this paper, the authors discuss the reduction of knowledge using conditional entropy in rough set theory. First, the changing tendency of the conditional entropy of decision attributes giving condition attributes is studied from the viewpoint of information. Next, a new reduction algorithm based on conditional entropy is developed. Furthermore, our simulation results show that the algorithm can find the minimal reduction in most cases.