期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
Application of High-Resolution Remote Sensing Technology in Quantitative Study on Coseismic Surface Rupture Zones: An Example of the 2008 M_w7.2 Yutian Earthquake
1
作者 SHAN Xinjian HAN Nana +3 位作者 SONG Xiaogang GONG Wenyu QU Chunyan ZHANG Yingfeng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2018年第6期2468-2469,共2页
Objective Nowadays, high-resolution remote sensing technology has brought new changes to surveys of earthquakes, and the quantitative study of seismic faults based on this technology has become a trend in the world(Ba... Objective Nowadays, high-resolution remote sensing technology has brought new changes to surveys of earthquakes, and the quantitative study of seismic faults based on this technology has become a trend in the world(Barzegari et al., 2017). An Mw 7.2 earthquake occurred in Yutian of Xinjiang on the western end of the Altyn Tagh fault on March 21 st, 2008. It is difficult to access this depopulated zone because of the high altitude and only 1–2 months of snowmelt. This study utilized high-resolution 展开更多
关键词 DEM Application of High-Resolution Remote Sensing Technology in Quantitative Study on Coseismic Surface rupture zones An Example of the 2008 M_w7.2 Yutian Earthquake
下载PDF
Quantitative analysis on tectonic deformation of active rupture zones
2
作者 江在森 牛安福 +4 位作者 王敏 黎凯武 方颖 张希 张晓亮 《Acta Seismologica Sinica(English Edition)》 EI CSCD 2005年第6期656-665,共10页
Based on the regional GPS data of high spatial resolution, we present a method of quantitative analysis on the tectonic deformation of active rupture zones in order to predict the location of forthcoming major earthqu... Based on the regional GPS data of high spatial resolution, we present a method of quantitative analysis on the tectonic deformation of active rupture zones in order to predict the location of forthcoming major earthquakes. Firstly we divide the main fault area into certain deformation units, then derive the geometric deformation and relative dislocation parameters of each unit and finally estimate quantitatively the slip and strain rates in each segment of the rupture zone. Furthermore, by comparing the consistency of deformation in all segments of the whole rupture zone, we can determine the possible anomalous segments as well as their properties and amplitudes. In analyzing the eastern boundaries of Sichuan-Yunnan block with the GPS velocity data for the period of 1991-2001, we have discovered that the Mianning-Ningnan-Dongchuan segment on the Zemuhe-Xiaojiang fault zone is relatively locked and the left-lateral shear strain rate here is higher. 展开更多
关键词 active rupture zone tectonic deformation GPS prediction of strong earthquake location
下载PDF
Parameters of Coseismic Reverse- and Oblique-Slip Surface Ruptures of the 2008 Wenchuan Earthquake,Eastern Tibetan Plateau 被引量:30
3
作者 XU Xiwei YU Guihua +4 位作者 CHEN Guihua RAN Yongkang LI Chenxia CHEN Yuegau CHANG Chungpai 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2009年第4期673-684,共12页
On May 12th, 2008, the Mw7.9 Wenchuan earthquake ruptured the Beichuan, Pengguan and Xiaoyudong faults simultaneously along the middle segment of the Longmenshan thrust belt at the eastern margin of the Tibetan platea... On May 12th, 2008, the Mw7.9 Wenchuan earthquake ruptured the Beichuan, Pengguan and Xiaoyudong faults simultaneously along the middle segment of the Longmenshan thrust belt at the eastern margin of the Tibetan plateau. Field investigations constrain the surface rupture pattern, length and offsets related to the Wenchuan earthquake. The Beichuan fault has a NE-trending rightlateral reverse rupture with a total length of 240 km. Reassessment yields a maximum vertical offset of 6.5±0.5 m and a maximum right-lateral offset of 4.9±0.5 m for its northern segment, which are the largest offsets found; the maximum vertical offset is 6.2±0.5 m for its southern segment. The Pengguan fault has a NE-trending pure reverse rupture about 72 km long with a maximum vertical offset of about 3.5 m. The Xiaoyudong fault has a NW-striking left-lateral reverse rupture about 7 km long between the Beichuan and Pengguan faults, with a maximum vertical offset of 3.4 m and left-lateral offset of 3.5 m. This pattern of multiple co-seismic surface ruptures is among the most complicated of recent great earthquakes and presents a much larger danger than if they ruptured individually. The rupture length is the longest for reverse faulting events ever reported. 展开更多
关键词 surface rupture zone coseismic offset Wenchuan earthquake LONGMENSHAN
下载PDF
Deformation of the Most Recent Co-seismic Surface Ruptures Along the Garzê–Yushu Fault Zone(Dangjiang Segment)and Tectonic Implications For the Tibetan Plateau 被引量:3
4
作者 WU Jiwen HUANG Xuemeng XIE Furen 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第2期443-454,共12页
The Garzê–Yushu strike-slip fault in central Tibet is the locus of strong earthquakes(M 〉 7). The deformation and geometry of the co-seismic surface ruptures are reflected in the surface morphology of the fau... The Garzê–Yushu strike-slip fault in central Tibet is the locus of strong earthquakes(M 〉 7). The deformation and geometry of the co-seismic surface ruptures are reflected in the surface morphology of the fault and depend on the structure of the upper crust as well as the pre-existing tectonics. Therefore, the most recent co-seismic surface ruptures along the Garzê–Yushu fault zone(Dangjiang segment) reveal the surface deformation of the central Tibetan Plateau. Remote sensing images and field investigations suggest a 85 km long surface rupture zone(striking NW-NWW), less than 50 m wide, defined by discontinuous fault scarps, right-stepping en echelon tensional cracks and left-stepping mole tracks that point to a left-lateral strike-slip fault. The gullies that cross fault scarps record systematic left-lateral offsets of 1.8 m to 5.0 m owing to the most recent earthquake, with moment magnitude of about M 7.5, in the Dangjiang segment. Geological and geomorphological features suggest that the spatial distribution of the 1738 co-seismic surface rupture zone was controlled by the pre-existing active Garzê–Yushu fault zone(Dangjiang segment). We confirm that the Garzê–Yushu fault zone, a boundary between the Bayan Har Block to the north and the Qiangtang Block to the south, accommodates the eastward extrusion of the Tibetan Plateau and generates strong earthquakes that release the strain energy owing to the relative motion between the Bayan Har and Qiangtang Blocks. 展开更多
关键词 co-seismic surface rupture zone strike-slip fault Dangjiang fault Garzê–Yushu fault zone Tibetan Plateau Proto-Tethys
下载PDF
Analysis of Remote Sensing Images of Ground Ruptures Resulting from the Kunlun Mountain Pass Earthquake in 2001 被引量:3
5
作者 SHANXinjian LIJianhua +1 位作者 MAChao LIUJiahang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2005年第1期43-52,共10页
On November 14, 2001, an earthquake measuring a magnitude of 8.1 occurred to the west of the Kunlun Mountain Pass which is near the border between Xinjiang and Qinghai of China. Since its epicenter is located in an ar... On November 14, 2001, an earthquake measuring a magnitude of 8.1 occurred to the west of the Kunlun Mountain Pass which is near the border between Xinjiang and Qinghai of China. Since its epicenter is located in an area at an elevation of 4900 m where the environment is extremely adverse, field investigation to this event seems very difficult. We have performed interpretation and analysis of the satellite images of ETM, SPOT, Ikonos, and ERS-1/2SAR to reveal the spatial distribution and deformation features of surface ruptures caused by this large earthquake. Our results show that the rupture zone on the ground is 426 km long, and strikes N90-110°E with evident left-lateral thrusting. In spatial extension, it has two distinct sections. One extends from the Bukadaban peak to the Kunlun Mountain Pass, with a total length of 350 km, and trending N95-110°E. Its fracture plane is almost vertical, with clear linear rupture traces and a single structure, and the maximum left-lateral offset is 7.8 m. This section is the main rupture zone caused by the earthquake, which is a re-fracturing along an old fault. The other is the section from Kushuihuan to the Taiyang Lake. It is 26 km long, trending N90-105°E, with the maximum strike-slip displacement being 3 m, and is a newly-generated seismic rupture. In a 50 km-long section between the Taiyang Lake and the Bukadaban peak, no rupture is found on the ground. The eastern and western rupture zones may have resulted from two earthquakes. The macroscopic epicenter is situated at 65 km east of the Hoh Sai Lake. The largest coseismic horizontal offset in the macroscopic epicenter ranges from 7 m to 8 m. Based on the dislocation partition of the whole rupture zone, it is suggested that this rupture zone has experienced a process of many times of intensification and fluctuation, exhibiting a remarkable feature of segmentation. 展开更多
关键词 satellite remote sensing EARTHQUAKE Kunlun Mountain Pass ground rupture zone
下载PDF
Surface rupture zone of the 1303 Hongtong M=8 earthquake, Shanxi Province 被引量:4
6
作者 JIANG Wa-li(江娃利) +5 位作者 DENG Qi-dong(邓起东) XU Xi-wei(徐锡伟) XIE Xin-sheng(谢新生) 《Acta Seismologica Sinica(English Edition)》 CSCD 2004年第4期389-397,共9页
Based on the latest displacement of Huoshan piedmont fault, Mianshan west-side fault and Taigu fault obtained from the beginning of 1990s up to the present, the characteristics of distribution and displacement of surf... Based on the latest displacement of Huoshan piedmont fault, Mianshan west-side fault and Taigu fault obtained from the beginning of 1990s up to the present, the characteristics of distribution and displacement of surface rup-ture zone of the 1303 Hongtong M = 8 earthquake, Shanxi Province are synthesized and discussed in the paper. If Taigu fault, Mianshan west-side fault and Huoshan piedmont fault were contemporarily active during the 1303 Hongtong M = 8 earthquake, the surface rupture zone would be 160 km long and could be divided into 3 segments, that is, the 50-km-long Huoshan piedmont fault segment, 35-km-long Mianshan west-side fault segment and 70-km-long Taigu fault segment, respectively. Among them, there exist 4 km and 8 km step regions. The surface rupture zone exhibits right-lateral features. The displacements of northern and central segments are respectively 6~7 m and the southern segment has the maximum displacement of 10 m. The single basin-boundary fault of Shanxi fault-depression system usually corresponds to M 7 earthquake, while this great earthquake (M = 8) broke through the obstacle between two basins. It shows that the surface rupture scale of great earthquake is changeable. 展开更多
关键词 M = 8 earthquake surface rupture zone changeability of rupture scale
下载PDF
Recent advances in imaging crustal fault zones: a review 被引量:10
7
作者 Hongfeng Yang 《Earthquake Science》 CSCD 2015年第2期151-162,共12页
Crustal faults usually have a fault core and surrounding regions of brittle damage, forming a low-velocity zone (LVZ) in the immediate vicinity of the main slip interface. The LVZ may amplify ground motion, influenc... Crustal faults usually have a fault core and surrounding regions of brittle damage, forming a low-velocity zone (LVZ) in the immediate vicinity of the main slip interface. The LVZ may amplify ground motion, influence rupture propagation, and hold important information of earthquake physics. A number of geophysical and geodetic methods have been developed to derive high-resolution structure of the LVZ. Here, I review a few recent approaches, including ambient noise cross-correlation on dense across-fault arrays and GPS recordings of fault-zone trapped waves. Despite the past efforts, many questions concerning the LVZ structure remain unclear, such as the depth extent of the LVZ. High-quality data from larger and denser arrays and new seismic imaging technique using larger portion of recorded waveforms, which are currently under active development, may be able to better resolve the LVZ structure. In addition, effects of the alongstrike segmentation and gradational velocity changes across the boundaries between the LVZ and the host rock on rupture propagation should be investigated by conducting comprehensive numerical experiments. Furthermore, high-quality active sources such as recently developed large-volume airgun arrays provide a powerful tool to continuously monitor temporal changes of fault-zone properties, and thus can advance our understanding of fault zone evolution. 展开更多
关键词 Fault zone structure Fault zone waves Earthquake rupture Temporal changes
下载PDF
The Surface Rupture Zone and Coseismic Deformation Produced by the Yutian Ms7.3 Earthquake of 21 March 2008,Xinjiang 被引量:2
8
作者 SHAN Xinjian QU Chunyan +5 位作者 WANG Chisheng ZHANG Guifang ZHANG Guohong SONG Xiaogang GUO Liming LIU Yunhua 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2012年第1期256-265,共10页
On 21 March 2008, a Ms7.3 earthquake occurred at Quickbird, Yutian County, Xinjiang. We attempt to reveal the features of the causative fault of this shock and its coseismic deformation field. Our work is based on ana... On 21 March 2008, a Ms7.3 earthquake occurred at Quickbird, Yutian County, Xinjiang. We attempt to reveal the features of the causative fault of this shock and its coseismic deformation field. Our work is based on analysis and interpretation to high-resolution satellite images as well as differential interferometric synthetic aperture radar (D-InSAR) data from the satellite Envisat SAR, coupled with seismicity, focal mechanism solutions and active tectonics in this region. The result shows that the 40 km-long, nearly NS trending surface rupture zone by this event lies on a range-front alluvial platform in Qira County. It is characterized by distinct linear traces and simple structure with 1-3-m-wide individual seams and maximum 6.5 m width of a collapse fracture. Along the rupture zone many secondary fractures and fault-bounded blocks are seen, exhibiting remarkable extension. The eoseismic deformation affected a large area 100~100 km2. D-InSAR analysis indicates that the interferometric deformation field is dominated by extensional faulting with a small strike-slip component. Along the causative fault, the western wall fell down and the eastern wall, that is the active unit, rose up, both with westerly vergence. Because of the big deformation gradients near the seismogenic fault, no interference fringes are seen on images, and what can be determined is a vertical displacement 70 cm or more between the two fault walls. According to the epicenter and differential occurrence times from the National Earthquake Information Center, China Earthquake Network Center, Harvard and USGS, it is suggested that the seismic fault ruptured from north to south. 展开更多
关键词 Yuntian Earthquake high resolution image D-INSAR surface rupture zone coseismic deformation field
下载PDF
Exploration of Suspected Surface Ruptures of the M_S8.0 Wenchuan Earthquake at Frontal Areas of Longmenshan Using Shallow Seismic Reflection 被引量:1
9
作者 Liu Baojin Yang Xiaoping +1 位作者 Feng Shaoying Kou Kunpeng 《Earthquake Research in China》 2009年第3期299-309,共11页
The great M_S8.0 Wenchuan earthquake on May 12,2008 was generated by abrupt faulting in the Yingxiu-Beichuan fault along the Longmenshan fault zone. The earthquake not only produced surface ruptures along the Yingxiu-... The great M_S8.0 Wenchuan earthquake on May 12,2008 was generated by abrupt faulting in the Yingxiu-Beichuan fault along the Longmenshan fault zone. The earthquake not only produced surface ruptures along the Yingxiu-Beichuan and Guanxian-Jiangyou faults,but also surface ruptures,arching of highway pavement,sand-boils and waterspouts in various degrees in areas such as Shifang and Mianzhu on the Chengdu Plain. To understand the shallow geological structures under the surface rupture zone,a 6350m long high-resolution shallow seismic reflection profile in near-EW direction was performed. This profile is located at Shigu town,Shifang city,where a suspected earthquake surface rupture zone was discovered. In this study,a group interval of 3m,shotpoint interval of 18m,and a 300-channel 25-fold observation system were used. In consideration of both near-surface reflections and dipping interface imaging,we adopted the split-spread geometry and asymmetrical zero-offset receiving technique. To better suppress random-noise and raise the signal-to-noise ratio of seismic data,30 times vertical stacking of vibrator signals was made for each common-shot gather after correlation of individual records. By using the above work method and spread geometry,we obtained high-resolution images of structures in the depth range of 15m~800m after data processing. The result shows the existence of buried thrust faults thrusting to the plain area and back-thrust faults under the surface rupture zone. It also shows that the activity of the buried thrust faults may be the main cause for folding and deformation in near-surface strata and coseismic surface rupturing. 展开更多
关键词 Ms8.0 Wenchuan earthquake Surface rupture zone Shallow seismic reflectionprofile Buried thrust fault
下载PDF
Relocating ruptures of two M6 earthquakes in Zhongba, South-central Tibet in 2004 and 2005 with seismological and geodetic methods
10
作者 Feng Bao Yingjie Zha Zhenjie Wang 《Earthquake Science》 CSCD 2011年第2期229-237,共9页
To better understand repeatability of strong earthquakes in previously ruptured zones during one seismogenic period, we studied the rupture zones of the doublet of M6 earthquakes in Zhongba region of southcentral Tibe... To better understand repeatability of strong earthquakes in previously ruptured zones during one seismogenic period, we studied the rupture zones of the doublet of M6 earthquakes in Zhongba region of southcentral Tibet, China, in 11 July 2004 and 7 April 2005, respectively. We focused on the overlapping degree of two strong quakes’ aftershock areas one week after the mainshocks by using the SQH station in China Seismic Network and a 68-stations temporary broadband seismic array, a part of the international HI-CLIMB project. About 115 local earthquakes were recorded in one week after the mainquakes, and we located these earthquakes by master event relative location (MERL) method. We also used this method to relocate 31 other M3.7 + earthquakes from 1 July 2004 to 1 July 2005. Meanwhile, we studied two mainshocks’ coseismic ruptures with satellite interferometric synthetic aperture radar (InSAR). Our results show that the ruptured zones of the two earthquakes do not overlapp substantially, either from early aftershock data or from InSAR inversions. 展开更多
关键词 rupture zone overlapping Zhongba earthquake sequences earthquake doublets master event relative location InSAR
下载PDF
Rupture Property of the 1927 Gulang M_s8.0 Earthquake and Numerical Simulation of Rupture Mechanism
11
作者 Zheng Wenjun Yuan Daoyang +3 位作者 Zhang Dongli He Wengui Guo Hua Liu Baichi 《Earthquake Research in China》 2005年第4期409-419,共11页
The 1927 Gulang M_S8.0 earthquake is a severe earthquake that followed the Haiyuan M_S8.5 earthquake of 1920 in the Qilian Mt._Hexi Corridor earthquake zone. There are divergences of opinion in the previous studies ab... The 1927 Gulang M_S8.0 earthquake is a severe earthquake that followed the Haiyuan M_S8.5 earthquake of 1920 in the Qilian Mt._Hexi Corridor earthquake zone. There are divergences of opinion in the previous studies about the rupture properties of the earthquake. Based on trenching and field investigation, and analysis of historical data, we hold that the earthquake resulted from the joint process of the Tianqiaogou_Huangyangchuan fault, Dongqingding segment of the Huangcheng_Shuangta fault and the Wuwei_Tianzhu buried fault, which constitute the Gulang nappe. By finite_element numerical simulation on the deformation mechanism of Gulang nappe, it is found that the stress and strain mainly concentrate in the western segment of the Tianqiaogou_Huangyangchuan fault, the Dongqingding segment of the Huangcheng_Shuangta fault, and the Gulangxia segment of the Wuwei_Tianzhu buried fault and the Gulang_Shuangta fault. The stress concentration coincides with the distribution of the earthquake surface rupture. It also proves that the earthquake is an outcome of the Gulang nappe activity as a whole. 展开更多
关键词 Gulang rupture zone Nappe structure Finite-element method Numerical simulation
下载PDF
Quantitative Seismicity Analysis for the Risk of Historical Large Earthquake Rupture Zone:Application to the Mid-North Segment of the North-South Seismic Belt
12
作者 Long Feng Jiang Changsheng +1 位作者 Feng Jiangang Tang Lanlan 《Earthquake Research in China》 2013年第3期331-343,共13页
Although seismic gap theory plays an important role in the med-and long-term earthquake prediction,the potential risk of the non-seismic gap in historical earthquake rupture areas will need to be simultaneously taken ... Although seismic gap theory plays an important role in the med-and long-term earthquake prediction,the potential risk of the non-seismic gap in historical earthquake rupture areas will need to be simultaneously taken into account in the study of med-and long-term earthquake prediction,due to the temporally clustering or non-linear behavior of large earthquake recurrence.In order to explore technical methods which can be based on observational data,and identify historical earthquake rupture zones( including the seismic gap in historical and prehistoric earthquake rupture zones),we select eight historical large earthquake rupture zones with different elapsed times on the mid-north segment of the North-South Seismic Belt to make quantitative analysis on the characteristics of modern seismicity of these zones and preliminarily explore the seismicity method for determining the urgency degree of potential earthquake hazards.The results mainly show that the pvalue,which reflects the attenuation of earthquake sequence,and the a-value,which reflects the seismicity rate,are strongly related to the elapsed time of the latest earthquake in the rupture zone.However,the corresponding relationships in some rupture areas are not clear perhaps due to the complex fault structure and faulting behavior.The b-value,which represents the state of tectonic stress accumulation,does not easily reflect the elapsed time information of different evolution stages.The b-value temporal scanning shows a steady evolution over time in most of the rupture zones,but in the rupture zone of the Wudu M8.0 earthquake of 1879,the b-value shows significant fluctuations with a decreasing trend for 20 years.By comparative analysis,we conclude that the rupture zones of the 1933 M7.5 Maoxian earthquake and the 1976 M7.2 Songpan-Pingwu earthquake are still in the decaying period of earthquake sequences,and thus do not have the background for recurrence of M7.0 earthquakes.The low b-value Maqu segment,which is located at the north margin of the rupture zone of the 842A.D.M7.0 Diebu earthquake,is more dangerous than the Diebu segment.The continuous decline of the b-value in the 1879 M8.0 Wudu earthquake rupture zone may also indicate a new round of seismogenic process. 展开更多
关键词 Historical earthquake rupture zone Large earthquake risk SEISMICITY Mid-north segment of North-South Seismic Belt
下载PDF
The Emergency Scientific Investigation on the Surface Rupture Zone of the M_S 7.1 Yushu Earthquake
13
作者 Wang Ji Chen Lichun +3 位作者 Tian Qinjian Li Zhimin Sun Xinzhe Zhang Xiaoqing 《Earthquake Research in China》 2011年第4期521-524,共4页
The coseismic surface rupture zone of the seismogenic fault of the Ms7.1 Yushu earthquake includes three left-stepping main ruptures, striking 300°- 320°, in general. An approximately 2km-long en echelon ten... The coseismic surface rupture zone of the seismogenic fault of the Ms7.1 Yushu earthquake includes three left-stepping main ruptures, striking 300°- 320°, in general. An approximately 2km-long en echelon tension fissure zone was found at Longbao town. The main rupture in the northern part is about 16km long, about 9kin long in the middle part, and about 7km long in the southern part, with a total length of 34km. Each of the main ruptures consists of a series of en echelon sub-ruptures represented by a series of compression bulges alternating with tension fissures or by en echelon fissures. The rupture at Changusi, the southernmost of the ruptures, is characterized by vertical displacement, with a value of 50cm. The rupture zone shows left-lateral strike-slip characteristics. The maximal horizontal slip is on the northern main rupture, with a value of 1.8m. 展开更多
关键词 Ms7. 1 Yushu earthquake Surface rupture zone Emergency scientificinvestigation
下载PDF
Rock Damage Structure of the South Longmen-Shan Fault in the 2008 M8 Wenchuan Earthquake Viewed with Fault-Zone Trapped Waves and Scientific Drilling 被引量:9
14
作者 LI Yonggang XU Zhiqin LI Haibing 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2014年第2期444-467,共24页
This article is to review results from scientific drilling and fault-zone trapped waves (FZTWs) at the south Longman-Shan fault (LSF) zone that ruptured in the 2008 May 12 M8 Wenchuan earthquake in Sichuan,China.I... This article is to review results from scientific drilling and fault-zone trapped waves (FZTWs) at the south Longman-Shan fault (LSF) zone that ruptured in the 2008 May 12 M8 Wenchuan earthquake in Sichuan,China.Immediately after the mainshock,two Wenchuan Fault Scientific Drilling (WFSD) boreholes were drilled at WFSD-1 and WFSD-2 sites approximately 400 m and 1 km west of the surface rupture along the Yinxiu-Beichuan fault (YBF),the middle fault strand of the south LSF zone.Two boreholes met the principal slip of Wenchuan earthquake along the YBF at depths of 589-m and 1230-m,respectively.The slip is accompanied with a 100-200-m-wide zone consisting of fault gouge,breccia,cataclasite and fractures.Close to WFSD-1 site,the nearly-vertical slip of ~4.3-m with a 190-m wide zone of highly fractured rocks restricted to the hanging wall of the YBF was found at the ground surface after the Wenchuan earthquake.A dense linear seismic array was deployed across the surface rupture at this venue to record FZTWs generated by aftershocks.Observations and 3-D finite-difference simulations of FZTWs recorded at this cross-fault array and network stations close to the YBF show a distinct low-velocity zone composed by severely damaged rocks along the south LSF at seismogenic depths.The zone is several hundred meters wide along the principal slip,within which seismic velocities are reduced by ~30-55% from wall-rock velocities and with the maximum velocity reduction in the ~200-m-wide rupture core zone at shallow depth.The FZTW-inferred geometry and physical properties of the south LSF rupture zone at shallow depth are in general consistent with the results from petrological and structural analyses of cores and well log at WFSD boreholes.We interpret this remarkable low-velocity zone as being a break-down zone during dynamic rupture in the 2008 M8 earthquake.We examined the FZTWS generated by similar earthquakes before and after the 2008 mainshock and observed that seismic velocities within fault core zone was reduced by ~10% due to severe damage of fault rocks during the M8 mainshock.Scientific drilling and locations of aftershocks generating prominent FZTWs also indicate rupture bifurcation along the YBF and the Anxian-Guangxian fault (AGF),two strands of the south LSF at shallow depth.A combination of seismic,petrologic and geologic study at the south LSF leads to further understand the relationship between the fault-zone structure and rupture dynamics,and the amplification of ground shaking strength along the low-velocity fault zone due to its waveguide effect. 展开更多
关键词 rupture zone rock damage structure scientific drilling fault-zone trapped waves Wenchuan Earthquake Longmen-Shan Fault
下载PDF
Fault zone structures of northern and southern portions of the main central fault generated by the 2008 Wenchuan earthquake using fault zone trapped waves 被引量:15
15
作者 Songlin Li Xiaoling Lai +1 位作者 Zhixiang Yao Qing Yang 《Earthquake Science》 CSCD 2009年第4期417-424,共8页
The rupture process of the May 12, 2008 Ms8.0 Wenchuan earthquake was very complex. To study the rupture zones generated by this earthquake, four dense temporary seismic arrays across the two surface breaking traces o... The rupture process of the May 12, 2008 Ms8.0 Wenchuan earthquake was very complex. To study the rupture zones generated by this earthquake, four dense temporary seismic arrays across the two surface breaking traces of the main-shock were deployed in July and recorded a great amount of aftershocks. This paper focuses on the data interpretation of two arrays across the central main fault, the northern array line 1 and southern array line 3. The fault zone trapped waves recorded by the two arrays were used to study the structure of the central main fault and the difference between the northern and southern portions. The results show that the widths of the rupture zone are about 170-200 m and 200-230 m for northern and southern portions respectively. And the corresponding dip angles are 80° and 70°. The seismic velocity inside the fracture zone is about one half of the host rock. By comparison, the northern portion of the rupture zone is slightly narrower and steeper than the southern portion. Besides these differences, one more interesting and important difference is the positions of the rupture zone with respect to surface breaking traces. At the northern portion, the rupture zone is centered at the surface breaking trace, while at the southern portion it is not but is shifted to the northwest. This difference reflects the difference of rupture behaviors between two portions of the central main fault. The width of the rupture zone is smaller than that of MS.1 Kunlun earthquake though these two earthquakes have almost the same magnitudes. Multiple ruptures may be one factor to cause the narrower rupture zone. 展开更多
关键词 Wenchuan earthquake seismic rupture zone fault zone trapped waves
下载PDF
Holocene activities of the Taigu fault zone,Shanxi Province, and their relations with the 1303 Hongdong M=8 earthquake 被引量:3
16
作者 XIE Xin-sheng(谢新生) +5 位作者 JIANG Wa-li(江娃利) WANG Huan-zhen(王焕贞) FENG Xi-ying(冯西英) 《Acta Seismologica Sinica(English Edition)》 EI CSCD 2004年第3期308-321,共14页
No abstract available
关键词 Taigu fault Holocene activities 1303 Hongdong earthquake surface rupture zone
下载PDF
A Discussion of Some Problems Concerning the Tosonhu Lake M_S7.5 Earthquake in 1937
17
作者 Li Chenxia Dai Huaguang +2 位作者 Chen Yongming Xu Xiwei Dai Wei 《Earthquake Research in China》 2007年第1期94-103,共10页
The East Kuulun active fault zone, which lies in the valley of the Kuulun Mountains above an elevation of 4,000 meters, is an important active fault zone in the Northeast Qinghai-Xizang (Tibet) Plateau. The 1937, th... The East Kuulun active fault zone, which lies in the valley of the Kuulun Mountains above an elevation of 4,000 meters, is an important active fault zone in the Northeast Qinghai-Xizang (Tibet) Plateau. The 1937, the Tosonhu lake Ms7. 5 earthquake occurred in the eastern segment of the East Kuulun active fault zone. Four field investigations were launched on this seism in 1963, 1971, 1980, and between 1986 and 1990. However, due to different extents of the investigations, four different conclusions have been gained. Concerning the length aspect of the surface rupture zone of this earthquake, the unanimous consensus is that its eastern end lies in the west side of the main Ridge of the A 'nyemaqen Mountains, but opinions about the western end and the location of the macro-epicenter are different. Based on investigation and comprehensive study, a series of scientific problems like geometric and kinetic characteristics, the length of the rupture zone, the maximum sinistral horizontal displacement and the macroepicenter were re-evaluated. We believe that the total length of this earthquake's surface deformation zone is at least 240km; the western end of the zone is at the west of Wnsuwuwoguole; the maximum sinistral horizontal displacement is 8m to the west of Baerhalasha gully on the east side of Sanchakou; the maximum vertical displacement is 3.5m in the south of Sanchakou and the macro-epicenter is in Sanchakou. 展开更多
关键词 The East Kuulun active fault zone The 1937 Tosonhu lake Ms7.5 earthquake Earthquake surface rupture zone Macro-epicenter
下载PDF
Late-Quaternary strong earthquakes on the seismogenic fault of the 1976 M_s7.8 Tangshan earthquake,Hebei,as revealed by drilling and trenching 被引量:15
18
作者 GUO Hui JIANG WaLi XIE XinSheng 《Science China Earth Sciences》 SCIE EI CAS 2011年第11期1696-1715,共20页
Composite borehole profiling combined with trenching is an effective way to acquire evidence of past ruptures of buffed active faults. In this study, three composite borehole profiles and a large-scale trench excavati... Composite borehole profiling combined with trenching is an effective way to acquire evidence of past ruptures of buffed active faults. In this study, three composite borehole profiles and a large-scale trench excavation were carded out across the surface rupture zone of the 1976 Ms7.8 Tangshan earthquake. The following three major conclusions have been reached. (1) The surface rupture zone of the 1976 earthquake extends more than 47 km long to the south of Tangshan city, passing to the west of Sunjialou, to Daodi town in Fengnan County, to Xihe in Fengnan County. (2) The surface rupture zone is divided into south and north branches. The north branch has mainly fight-lateral strike-slip motion, and the vertical displacement of the surface is up on the west and down on the east. On the other hand, the vertical displacement of the south branch is up on the east and down on the west, accompanied by some right-lateral slip. Such a faulting style cannot be explained by the movement of a single normal or reverse fault, but is consistent with the vertical displacement field induced by the fight-lateral strike-slip of the fault belt. The drilling and trenching data from this study verify that such activity continued through the Late Quaternary on the Tangshan Fault. (3) The fault planes exhumed by trenching and the dislocations of strata revealed by the boreholes indicate that multiple faulting events occurred on the Tangshan Fault in the Late Quaternary. The timing of three ruptures prior to the 1976 earthquake was 7.61-8.13, 〉14.57, and 24.21-26.57 ka BP. Counting the earthquake of 1976, the recurrence interval of the four strong events is about 6.7 to 10.8 ka. On one of the three borehole profiles, the Niumaku profile, nine faulting events were detected since 75.18 ka BP with an average interval of 8.4 ka. In addition, this paper also discusses the difference between the Late Quaternary sedimentary environments to the north and south of Tangshan city based on stratum dating. 展开更多
关键词 Tangshan earthquake surface rupture zone multi-stage activity earthquake recurrence interval paleoseismic trench-ing borehole profile
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部