采用水热法制备硼硫(B/S)共掺杂纳米二氧化钛(B-S-TiO_2),并配制成浆料,利用丝网印刷技术在FTO导电玻璃上制备B-S-TiO_2薄膜;用化学浴沉积(CBD)法制备了CdS量子点敏化B-S-TiO_2薄膜电极,并用X射线衍射(XRD)、电子显微镜(TEM)、元素分析...采用水热法制备硼硫(B/S)共掺杂纳米二氧化钛(B-S-TiO_2),并配制成浆料,利用丝网印刷技术在FTO导电玻璃上制备B-S-TiO_2薄膜;用化学浴沉积(CBD)法制备了CdS量子点敏化B-S-TiO_2薄膜电极,并用X射线衍射(XRD)、电子显微镜(TEM)、元素分析能谱(EDS)和紫外–可见光谱对其进行表征分析;结果显示:B/S共掺杂不会改变TiO_2的晶型,掺杂后的TiO_2吸收边带发生明显红移,吸收强度显著增强;同样用化学浴沉积的方法制备Ni S工作电极,用改性的聚硫化物((CH3)4N)2S/((CH3)4N)2Sn)电解液,组装CdS量子点敏化硼硫(B/S)共掺杂纳米二氧化钛(B-S-TiO_2)太阳能电池,并测试电池光电性能。测试结果表明,在AM1.5G的照射下,电池的能量转化效率(η)由3.21%增大到3.69%,提高了14.9%,电池获得高达(Voc)1.218 V的开路电压和3.42 m A/cm2的短路光电流(Jsc),以及高达88.7%的填充因子(ff)。展开更多
如何采用无酸工艺合成高性能超级电容器(SCs)用多孔炭纳米片电极材料是一个大的挑战。本文报道了一种简便且无酸的由煤焦油沥青(CTP)构建N/S共掺杂相互连接的多孔炭纳米片(NS-IPCNs)的新方法。制备的NS-IPCN_(800)具有相互连接的三维结...如何采用无酸工艺合成高性能超级电容器(SCs)用多孔炭纳米片电极材料是一个大的挑战。本文报道了一种简便且无酸的由煤焦油沥青(CTP)构建N/S共掺杂相互连接的多孔炭纳米片(NS-IPCNs)的新方法。制备的NS-IPCN_(800)具有相互连接的三维结构,这些三维结构由含有大量分级孔的二维炭纳米片组成。其中,丰富的微孔增加了离子吸附所需的活性位点,而短的中孔为离子传输提供了通道。此外,相互连接的三维结构为电子的快速传递提供了通道;掺杂的杂原子为NS-IPCNs电极提供了额外的赝电容。受益于这些优点,NS-IPCN_(800)电极在6 mol L^(−1) KOH电解液中,在0.05 A g^(−1)电流密度下的比电容达302 F g^(−1)。另外,NS-IPCN_(800)电容器在功率密度为25.98 W kg^(−1)下其能量密度达9.71 Wh kg^(−1)。更重要的是,NS-IPCN_(800)电容器在10000次循环充放电后电容保持率为94.2%,表现出优异的循环稳定性。这项工作为由CTP构建高性能储能装置用NS-IPCNs开辟了一种危害较小的策略。展开更多
文摘采用水热法制备硼硫(B/S)共掺杂纳米二氧化钛(B-S-TiO_2),并配制成浆料,利用丝网印刷技术在FTO导电玻璃上制备B-S-TiO_2薄膜;用化学浴沉积(CBD)法制备了CdS量子点敏化B-S-TiO_2薄膜电极,并用X射线衍射(XRD)、电子显微镜(TEM)、元素分析能谱(EDS)和紫外–可见光谱对其进行表征分析;结果显示:B/S共掺杂不会改变TiO_2的晶型,掺杂后的TiO_2吸收边带发生明显红移,吸收强度显著增强;同样用化学浴沉积的方法制备Ni S工作电极,用改性的聚硫化物((CH3)4N)2S/((CH3)4N)2Sn)电解液,组装CdS量子点敏化硼硫(B/S)共掺杂纳米二氧化钛(B-S-TiO_2)太阳能电池,并测试电池光电性能。测试结果表明,在AM1.5G的照射下,电池的能量转化效率(η)由3.21%增大到3.69%,提高了14.9%,电池获得高达(Voc)1.218 V的开路电压和3.42 m A/cm2的短路光电流(Jsc),以及高达88.7%的填充因子(ff)。
文摘如何采用无酸工艺合成高性能超级电容器(SCs)用多孔炭纳米片电极材料是一个大的挑战。本文报道了一种简便且无酸的由煤焦油沥青(CTP)构建N/S共掺杂相互连接的多孔炭纳米片(NS-IPCNs)的新方法。制备的NS-IPCN_(800)具有相互连接的三维结构,这些三维结构由含有大量分级孔的二维炭纳米片组成。其中,丰富的微孔增加了离子吸附所需的活性位点,而短的中孔为离子传输提供了通道。此外,相互连接的三维结构为电子的快速传递提供了通道;掺杂的杂原子为NS-IPCNs电极提供了额外的赝电容。受益于这些优点,NS-IPCN_(800)电极在6 mol L^(−1) KOH电解液中,在0.05 A g^(−1)电流密度下的比电容达302 F g^(−1)。另外,NS-IPCN_(800)电容器在功率密度为25.98 W kg^(−1)下其能量密度达9.71 Wh kg^(−1)。更重要的是,NS-IPCN_(800)电容器在10000次循环充放电后电容保持率为94.2%,表现出优异的循环稳定性。这项工作为由CTP构建高性能储能装置用NS-IPCNs开辟了一种危害较小的策略。