期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
基于SE-YOLOv5模型皮带异物检测算法研究
1
作者 边铁山 《中国矿业》 北大核心 2024年第7期127-134,共8页
以某煤矿1305智能工作面皮带异物识别为工程背景,为了解决井下皮带运输机因废弃锚杆、大块煤等异物而导致的皮带撕裂甚至损伤停机等问题,亟需开展皮带异物智能检测研究。本文提出了SE-YOLOv5皮带异物智能检测方法,该方法以YOLOv5目标检... 以某煤矿1305智能工作面皮带异物识别为工程背景,为了解决井下皮带运输机因废弃锚杆、大块煤等异物而导致的皮带撕裂甚至损伤停机等问题,亟需开展皮带异物智能检测研究。本文提出了SE-YOLOv5皮带异物智能检测方法,该方法以YOLOv5目标检测技术为基础模型,加入SE通道注意力机制进行优化,并对学习率、图像输入批大小、权重衰减等模型参数调整,对构建的数据集进行训练检测,将检测结果与Faster-RCNN、YOLOv3、CenterNet、YOLOv5等模型进行对比。研究结果表明:SE-YOLOv5模型预测结果得到较大提升,对锚杆的预测精度达0.98,对大块煤的预测精度达0.88,召回率(Recall)为0.91,各个检测目标平均精度的平均值(mAP)为0.912,单张识别速度为0.037s;此外,对处于低照度、高粉尘浓度等环境下的数据集仍有较高的识别率,说明SE-YOLOv5模型检测精度高、速度快、鲁棒性强,可以满足复杂环境下皮带异物识别的要求。煤矿皮带异物检测是煤矿安全和生产效率的关键组成部分,采用现代化的检测技术有助于提高系统生产效率,保障设备安全,降低维护成本。 展开更多
关键词 异物检测 se-yolov5 参数调整 复杂环境 识别率
下载PDF
基于改进的YOLOv5小目标检测SAR船只方法
2
作者 龙莹莹 余华云 +1 位作者 杨武 殷俊凯 《湖南邮电职业技术学院学报》 2024年第3期56-60,共5页
为了有效管理海上交通、实施海上救援和保护海洋环境,需要精确地掌握海上船只目标的位置和分布情况,但传统的检测方法(如CFAR)往往会出现船只细节丢失和小目标漏检的情况。为了解决以上问题,将YOLOv5模型进行改进。首先通过数据增强,提... 为了有效管理海上交通、实施海上救援和保护海洋环境,需要精确地掌握海上船只目标的位置和分布情况,但传统的检测方法(如CFAR)往往会出现船只细节丢失和小目标漏检的情况。为了解决以上问题,将YOLOv5模型进行改进。首先通过数据增强,提升数据的多样性,进而提高模型的泛化能力;之后加入SE注意力机制和小目标检测层来增强模型对船只的特征提取能力。实验结果表明,加入SE注意力机制和小目标检测层后,平均准确度mAP分别提高了2%和3.1%,可以有效改善船只密集分布、沿岸分布等不同场景下的检测准确率,实现整体准确率的提高。 展开更多
关键词 SAR船只检测 YOLOv5 SE注意力机制 小目标检测层
下载PDF
基于改进YOLOv5s汽车驾舱遗忘物检测
3
作者 吴继薇 焦良葆 +2 位作者 焦波 祝阳 高阳 《计算机测量与控制》 2024年第9期27-35,共9页
针对目前汽车驾舱内遗忘物检测精度不高、速度慢和检测效果差的问题,提出一种基于改进的YOLOv5s汽车驾舱遗忘物的检测方法;该检测方法将YOLOv5s作为基础网络,在此基础上进行改进;首先本实验将SE注意力模块添加到Backbone网络中,加强模... 针对目前汽车驾舱内遗忘物检测精度不高、速度慢和检测效果差的问题,提出一种基于改进的YOLOv5s汽车驾舱遗忘物的检测方法;该检测方法将YOLOv5s作为基础网络,在此基础上进行改进;首先本实验将SE注意力模块添加到Backbone网络中,加强模型对通道信息的关注提升目标检测性能;其次改进空间金字塔池化模块,将原有的SPPF模块改进为SPPCSPC模块,使得该网络更加关注待检测目标的特征;最后同时引入GSConv层,能够缓解DSC(深度可分离卷积)的缺陷,并充分利用DSC的优势,在小目标检测方面取得明显的提升效果,既保证了语义信息又平衡了模型的准确性,也提升了检测速度;通过训练结果说明,改进后的网络与原YOLOv5s网络相比,其平均精度均值mAP提高了2%,查准率提升了3.5%;改进后的网络具有良好的提升效果,表明了该方法的有效性。 展开更多
关键词 遗忘物 YOLOv5s 注意力机制 SE GSConv SPPCSPC
下载PDF
基于改进YOLOv5的贴片电感表面缺陷检测研究
4
作者 陈建春 乔健 +1 位作者 朱子唯 王功伟 《佛山科学技术学院学报(自然科学版)》 CAS 2024年第4期10-18,共9页
为实现贴片电感表面缺陷的快速精准检测,突破目前贴片电感表面缺陷检测速度慢、准确率低的技术难题,在YOLOv5算法基础上,引入SE注意力模块和双向特征融合网络(BiFPN)模型,提出基于注意力机制的特征提取网络结构,分别对不同特征通道赋予... 为实现贴片电感表面缺陷的快速精准检测,突破目前贴片电感表面缺陷检测速度慢、准确率低的技术难题,在YOLOv5算法基础上,引入SE注意力模块和双向特征融合网络(BiFPN)模型,提出基于注意力机制的特征提取网络结构,分别对不同特征通道赋予相应权重信息,使其在特征融合中能够快速传递,进一步提高了贴片电感表面缺陷模型的检测精度;考虑提取网络时无法高效检测出贴片电感的缺陷类型,设计出基于加权双向特征金字塔结构,增强了模型对不同尺度特征信息的表达能力;利用贴片电感表面缺陷检测数据集完成了SE注意力机制和BiFPN网络的消融实验以及目标检测算法的对比实验。结果表明,提出的改进模型平均准确率均值(mAP)达到97.12%较原YOLOv5算法提升了5.87%,检测速度达到40.47FPS,能够满足贴片电感表面缺陷检测的实时性和准确性要求。 展开更多
关键词 缺陷检测 YOLOv5 SE注意力模块 BiFPN
下载PDF
基于改进Yolov5的绝缘子损坏检测识别
5
作者 黄国恒 曹雪虹 +1 位作者 焦良葆 钱予阳 《计算机测量与控制》 2024年第7期23-29,共7页
绝缘子是一种设计用于在不同电势导线上承受电压和机械压力的装置;由于电环境和电力负载波动的影响,绝缘子可能会遭受多种电-机耦合应力破坏,从而无法正常工作并且影响整个绝缘子网络的寿命;为了解决这个问题,提出了通过目标检测算法来... 绝缘子是一种设计用于在不同电势导线上承受电压和机械压力的装置;由于电环境和电力负载波动的影响,绝缘子可能会遭受多种电-机耦合应力破坏,从而无法正常工作并且影响整个绝缘子网络的寿命;为了解决这个问题,提出了通过目标检测算法来检测绝缘子损坏的方案;改进的方案基于Yolov5s模型进行;首先,在原有的Yolov5s模型基础上增加了更多的小目标检测层,从而提高了检测的精度;此外,引入了额外的运算层以扩展特征图,并使用SE(注意和观察)注意模块使网络更专注于检测对象,还采用SIOU代替YOLOv5s中的损失函数;实验结果显示,改进后的模型相对于传统的Yolov5s模型在绝缘子损坏检测方面具有明显优势;改进后的模型在mAP(平均精度均值)、P(查准率)和R(查全率)等指标上分别提高了2.5%、1.1%和0.8%;与原始的Yolov5s模型以及其他模型(如Yolov5m、Yolov5l等)相比,在绝缘子缺陷检测和识别方面具有更强的竞争力;这些改进策略为提高绝缘子损坏检测精度提供了有效的解决方案;通过这些改进,可以更准确地检测绝缘子损坏,并及早采取必要的维修和保养措施,以延长绝缘子的寿命和确保电力系统的稳定运行。 展开更多
关键词 绝缘子损坏 Yolov5网络模型 小目标检测层 注意力模块SE 损失函数SIOU
下载PDF
基于改进YOLOv5s小目标检测算法
6
作者 刘艺 吴路路 +1 位作者 邓湘琳 杜欣 《安徽科技学院学报》 2024年第4期69-77,共9页
目的:针对现有目标检测算法进行小目标检测时检测效果不理想、漏检率高的问题,提出一种改进的YOLOv5s检测算法,提升小目标检测效果。方法:在原有模型基础上,引入BottleneckCSP模块并增加大尺度特征融合结构,提升模型小目标特征捕捉能力... 目的:针对现有目标检测算法进行小目标检测时检测效果不理想、漏检率高的问题,提出一种改进的YOLOv5s检测算法,提升小目标检测效果。方法:在原有模型基础上,引入BottleneckCSP模块并增加大尺度特征融合结构,提升模型小目标特征捕捉能力;同时在网络结构中融合SE注意力机制,使得网络自主学习更关注小目标特征通道,增强网络模型对小目标的检测效果。结果:在同一自制小目标检测数据集上进行训练验证,与已有算法比较,能够有效提升YOLOv5s目标检测算法的mAP值和训练收敛速度,拓展小目标检测范围(由原有算法的0.002 5~0.010 0缩小至0.000 8~0.001 4),提高小目标检测性能(平均检测率提升46%)。结论:改进算法能够有效提升小目标的检测能力。 展开更多
关键词 改进YOLOv5s 小目标检测 BottleneckCSP 大尺度特征融合 SE注意力机制
下载PDF
基于改进YOLO v5算法的光伏组件红外热成像缺陷检测 被引量:4
7
作者 孔松涛 徐甄泽 +4 位作者 林星宇 张椿秋 蒋国庆 张淳钦 王堃 《红外技术》 CSCD 北大核心 2023年第9期974-981,共8页
现有光伏组件缺陷识别方法存在提取特征困难、实时性较差导致了对光伏组件的缺陷故障检测的识别精度不高,本文提出一种基于改进YOLO v5算法的光伏组件红外热成像缺陷检测方法。改进后的YOLO v5算法主要是在原来的基础上增添注意机制SE模... 现有光伏组件缺陷识别方法存在提取特征困难、实时性较差导致了对光伏组件的缺陷故障检测的识别精度不高,本文提出一种基于改进YOLO v5算法的光伏组件红外热成像缺陷检测方法。改进后的YOLO v5算法主要是在原来的基础上增添注意机制SE模块,并且改进损失函数将GIoU改为EIoU提高模型收敛效果、最后采用KG模块平衡特征金字塔结构对模型进行优化,用以提高YOLOv5算法的识别精度和收敛效果。改进后的网络结构应用在YOLO v5s模型中,在光伏组件红外图像的检测上的平均检测精度mAP可以达到92.8%,比原本的YOLO v5s算法88.3%提升了4.5%,在精确度和召回率上的收敛效果也比原始YOLO v5算法模型有所提高,改进后的网络结构应用于l、m、x三种模型中,其检测精度都有所提升,因此改进后的YOLOv5算法适用于4种模型。 展开更多
关键词 缺陷检测 深度学习 YOLOv5 损失函数 SE模块 平衡特征金字塔结构
下载PDF
基于改进YOLOv5在电力巡检中的目标检测算法研究 被引量:12
8
作者 游越 伊力哈木·亚尔买买提 +1 位作者 吕怡凡 赵子凡 《高压电器》 CAS CSCD 北大核心 2023年第2期89-96,共8页
针对输电线路巡检的复杂场景下被遮挡以及目标较小导致的误检问题,文中提出了一种基于YOLOv5的改进算法模型。首先通过数据增强和数据扩充数据集进行预处理;其次给引入SE模块,加强对不同尺度下目标的特征融合;然后引入CBAM模块,进行进... 针对输电线路巡检的复杂场景下被遮挡以及目标较小导致的误检问题,文中提出了一种基于YOLOv5的改进算法模型。首先通过数据增强和数据扩充数据集进行预处理;其次给引入SE模块,加强对不同尺度下目标的特征融合;然后引入CBAM模块,进行进一步特征提取,使提取的特征信息更加突出。最后,对损失函数进行优化,改进小数据导致的样本不均衡现象。经实验证明,改进后的算法有效地提高了被遮挡的目标和小目标的识别率,mAP较原算法精度提高了5%,Recall提高了14.6%。与其他改进模型相比,精度、召回率都有提高,验证了该模型在各种场合下具有较强的鲁棒性和泛化能力。 展开更多
关键词 输电线路巡检 遮挡 YOLOv5 CBAM SE
下载PDF
基于改进YOLOv5s的铸坯表面缺陷检测系统 被引量:1
9
作者 邓能辉 周秉国 +2 位作者 张志杰 石杰 吴昆鹏 《仪表技术与传感器》 CSCD 北大核心 2023年第10期72-78,共7页
针对目前连铸坯表面缺陷检测方法存在检测准确率和效率低的问题,提出了一种基于改进YOLOv5s的连铸坯表面缺陷检测系统。首先,基于CycleGAN的域迁移能力和冷轧样本集实现铸坯复杂背景的简单化。其次,利用Ghost网络和GhostBottleneck重新... 针对目前连铸坯表面缺陷检测方法存在检测准确率和效率低的问题,提出了一种基于改进YOLOv5s的连铸坯表面缺陷检测系统。首先,基于CycleGAN的域迁移能力和冷轧样本集实现铸坯复杂背景的简单化。其次,利用Ghost网络和GhostBottleneck重新构建YOLOv5s的特征提取骨架以达到轻量化网络结构提高检测速度的目的。最后,在YOLOv5s颈部模块中嵌入SE注意力机制以提升缺陷关键信息捕捉能力,从而提高检测准确率。实验结果表明,改进YOLOv5s在铸坯表面图像数据集上mAP指标达到93.6%,相较于原始的YOLOv5s,mAP指标提升了2.9%,计算量降低了2.5 FLOPs。能够满足铸坯表面缺陷检测系统的实时要求及准确率指标,并且降低了部署所需的计算资源。 展开更多
关键词 铸坯 缺陷检测 CycleGAN YOLOv5s GHOST GhostBottleneck SE注意力机制
下载PDF
基于YOLOv5算法的满文不定长字元数据集制作方法研究
10
作者 李昭仪 于淼 于晓鹏 《计算机时代》 2023年第12期34-39,43,共7页
在进行满文识别时需要用到大量的满文数据,但目前还没有满文不定长字元数据集。本文提出一种基于YOLOv5的满文不定长字元数据集制作方法,用于后续的训练和研究。与传统切割方法相比,只需提供待检测图片即可。通过对基于YOLOv5的数据集... 在进行满文识别时需要用到大量的满文数据,但目前还没有满文不定长字元数据集。本文提出一种基于YOLOv5的满文不定长字元数据集制作方法,用于后续的训练和研究。与传统切割方法相比,只需提供待检测图片即可。通过对基于YOLOv5的数据集制作流程的改进,去除原YOLOv5实验中对图像进行翻转和随机裁剪部分,并且将原YOLOv5的损失函数替换为EIoU,添加了注意力机制SE模块。实验结果表明:与原始的YOLOv5网络相比,其精度和召回率分别提高到98.95%和98.83%,证明了算法的实用性和高效性。 展开更多
关键词 YOLOv5 EIoU SE模块 数据集制作 目标检测 满文
下载PDF
基于改进YOLOv5s的安全帽检测算法 被引量:19
11
作者 赵睿 刘辉 +2 位作者 刘沛霖 雷音 李达 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2023年第8期2050-2061,共12页
针对现有安全帽检测算法难以检测小目标、密集目标等缺点,提出一种基于YOLOv5s的安全帽检测改进算法。采用DenseBlock模块来代替主干网络中的切片结构,提升网络的特征提取能力;在网络颈部检测层加入SE-Net通道注意力模块,引导模型更加... 针对现有安全帽检测算法难以检测小目标、密集目标等缺点,提出一种基于YOLOv5s的安全帽检测改进算法。采用DenseBlock模块来代替主干网络中的切片结构,提升网络的特征提取能力;在网络颈部检测层加入SE-Net通道注意力模块,引导模型更加关注小目标信息的通道特征,以提升对小目标的检测性能;对数据增强方式进行改进,丰富小尺度样本数据集;增加一个检测层以便能更好地学习密集目标的多级特征,从而提高模型应对复杂密集场景的能力。此外,构建一个面向密集目标及远距离小目标的安全帽检测数据集。实验结果表明:所提改进算法比原始YOLOv5s算法平均精确率(mAP@0.5)提升6.57%,比最新的YOLOX-L及PP-YOLOv2算法平均精确率分别提升1.05%与1.21%,在密集场景及小目标场景下具有较强的泛化能力。 展开更多
关键词 安全帽检测 YOLOv5s算法 数据增强 DenseBlock模块 SE-Net注意力模块
原文传递
基于改进YOLOv5羊只目标检测方法
12
作者 张博凡 孙丙宇 房永峰 《淮北师范大学学报(自然科学版)》 CAS 2023年第4期65-71,共7页
针对羊的群居特性导致羊只重叠程度较高、检测效率低,且易造成漏检错检等问题,提出一种基于改进YOLOv5羊只目标检测方法。将YOLOv5的耦合头部替换为解耦头部,用来提升收敛速度;引入C3SE注意力模块,使网络可以更专注学习羊只特征;将NMS(N... 针对羊的群居特性导致羊只重叠程度较高、检测效率低,且易造成漏检错检等问题,提出一种基于改进YOLOv5羊只目标检测方法。将YOLOv5的耦合头部替换为解耦头部,用来提升收敛速度;引入C3SE注意力模块,使网络可以更专注学习羊只特征;将NMS(Non-Maximum Suppression)更换为DIOU-NMS(Distance Intersec⁃tion Over Union-Non-Maximum Suppression),解决羊群因重叠检测不精确问题,提升定位与检测精度。实验结果表明,改进后的YOLOv5精准度P提升2.8%,召回率R提升3.5%,平均精度均值mAP提升3.0%,满足实际场景对羊只的检测要求。 展开更多
关键词 目标检测 YOLOv5 SE注意力机制 DIOU-NMS 头部解耦
下载PDF
基于改进YOLOv5的小样本水下声呐图像目标检测
13
作者 陈启北 韩路军 陈慧 《邢台职业技术学院学报》 2023年第5期54-59,94,共7页
声纳图像目标检测在水下救援和资源勘探中具有重要意义。传统的声纳目标检测技术存在智能化程度低、鲁棒性差、实时性差、识别精度低等问题。尽管许多基于卷积神经网络的目标检测算法在自然图像中取得了很大的成功。然而,对于水下声纳... 声纳图像目标检测在水下救援和资源勘探中具有重要意义。传统的声纳目标检测技术存在智能化程度低、鲁棒性差、实时性差、识别精度低等问题。尽管许多基于卷积神经网络的目标检测算法在自然图像中取得了很大的成功。然而,对于水下声纳图像来说,海底混响噪声干扰、前景目标区域像素占比低、成像分辨率差等问题对实现准确的水下目标检测提出了相当大的挑战。为了解决这些问题,文章基于YOLOv5目标检测模型提出了一种新的声纳图像目标检测器。首先,在原有Backbone的基础上基于多头注意力机制引入C3MHSA模块和SE注意机制,提高模型的收敛性和提取目标形状和空间有效特征的能力。此外,在Backbone中加入RFB模块,提高网络在高感受野存在的情况下学习重要信息的能力。实验结果表明,改进后的Yolov5网络的mAP@0.5值为98.9%,较原始YOLOv5模型有了全面大幅提升,明显优于现有方法。 展开更多
关键词 水下目标检测 声呐图像 YOLOv5 SE注意力
下载PDF
基于改进YOLOv5的输电线路绝缘子识别方法 被引量:9
14
作者 王素珍 赵霖 +1 位作者 邵明伟 葛润东 《电子测量技术》 北大核心 2022年第21期181-188,共8页
针对输电线路绝缘子识别准确率低、识别花费时间长的问题,提出一种改进的YOLOv5绝缘子识别方法。首先,通过引入超分辨率卷积网络提升数据集中图像样本质量;其次,通过引入k3-Ghost结构替换原始网络BCSP模块中的普通卷积,减少模型主干网... 针对输电线路绝缘子识别准确率低、识别花费时间长的问题,提出一种改进的YOLOv5绝缘子识别方法。首先,通过引入超分辨率卷积网络提升数据集中图像样本质量;其次,通过引入k3-Ghost结构替换原始网络BCSP模块中的普通卷积,减少模型主干网络参数量,在主干网络尾部引入SENet注意力模块,加强模型对于通道信息的关注提升目标检测性能;在颈部网络引入DC-BiFPN结构替换原始结构,对不同尺度特征赋予不同权重以使多尺度特征进行更好的融合,提升绝缘子识别效果。最后,使用CIOU作为回归损失函数,加快网络收敛速度。实验结果表明,本文提出的方法在保证绝缘子识别准确率的同时拥有更高的识别速度,检测准确率达到89.5%,检测速度达到35.7 FPS,验证了改进方法的有效性。 展开更多
关键词 绝缘子检测 YOLOv5 超分重建 GHOST SE DC-BiFPN
原文传递
基于改进YOLOv5的车辆端目标检测 被引量:7
15
作者 黎国溥 陈升东 +2 位作者 王亮 邹凯 袁峰 《计算机系统应用》 2022年第12期127-134,共8页
在自动驾驶应用场景下,将YOLOv5应用于目标检测中,性能较之前版本有明显的提升,但在高运行速度情况下检测精度仍不够高,本文提出一种基于改进YOLOv5的车辆端目标检测方法.为解决训练不同数据集时需手动设计初始锚框大小,引入自适应锚框... 在自动驾驶应用场景下,将YOLOv5应用于目标检测中,性能较之前版本有明显的提升,但在高运行速度情况下检测精度仍不够高,本文提出一种基于改进YOLOv5的车辆端目标检测方法.为解决训练不同数据集时需手动设计初始锚框大小,引入自适应锚框计算.在主干网络(backbone)添加压缩与激励模块(squeeze and excitation,SE),筛选针对通道的特征信息,提升特征表达能力.为了提升检测不同大小物体时的精度,将注意力机制与检测网络融合,把卷积注意力模块(convolutional block attention module,CBAM)与Neck部分融合,使模型在检测不同大小的物体时能关注重要的特征,提升特征提取能力.在主干网络中使用空间金字塔池化SPP模块,使得模型输入可以输入任意图像高宽比和大小.在激活函数方面,进行卷积操作后使用Hardswish激活函数,应用于整个网络模型.在损失函数方面,使用CIoU作为检测框回归的损失函数,改善定位精度低和训练过程中目标检测框回归速度慢的问题.实验结果表明,改进后的检测模型在KITTI 2D数据集上测试,目标检测的精确率(precision)提高了2.5%,召回率(recall)提高了5.1%,平均精度均值(mean average precision,mAP)提高了2.3%. 展开更多
关键词 目标检测 YOLOv5 压缩与激励模块 注意力机制 卷积注意力模块 激活函数 Hardswish
下载PDF
面向胃息肉检测的深度学习神经网络优化 被引量:2
16
作者 金洪杨 董晓淦 +2 位作者 魏青彪 刘景达 岳龙旺 《科学技术与工程》 北大核心 2023年第15期6506-6512,共7页
胃镜检查是发现胃息肉的主要方法。传统的人工检查方式存在准确率低,易漏诊、误诊的情况。提出了一种基于深度学习的YOLOv5-SE胃息肉检测网络。该网络在目标检测算法YOLOv5的基础上进行了改进,引入注意力机制,将SE Block加入到主干网络... 胃镜检查是发现胃息肉的主要方法。传统的人工检查方式存在准确率低,易漏诊、误诊的情况。提出了一种基于深度学习的YOLOv5-SE胃息肉检测网络。该网络在目标检测算法YOLOv5的基础上进行了改进,引入注意力机制,将SE Block加入到主干网络的最后一层,增强网络的特征提取能力。改进后的YOLOv5-SE胃息肉检测网络的平均精度均值(mean average precision, mAP)达到了94.5%,相比原网络提高了3.1%,推理速度达到67 f/s(帧/秒),在满足实时性要求下较好地完成了胃息肉检测的要求。YOLOv5-SE胃息肉检测网络具有在实时性、自动检测的精度和速度等方面有一定提升,对促进胃息肉的自动检测有重要意义。 展开更多
关键词 胃息肉检测 深度学习 神经网络 YOLOv5 SE-Block
下载PDF
一种改进的基于YOLOv5s的轻量化航拍目标检测模型
17
作者 陈海燕 毛利宏 《计算机科学》 2024年第S02期465-472,共8页
无人机航拍图像背景复杂、目标密集且小目标占比大,加大了目标检测的难度。基于深度学习的目标检测模型计算复杂度高,难以部署在无人机搭载的嵌入式设备上。针对此问题,提出了一种改进的基于YOLOv5s的轻量化航拍图像目标检测模型。首先... 无人机航拍图像背景复杂、目标密集且小目标占比大,加大了目标检测的难度。基于深度学习的目标检测模型计算复杂度高,难以部署在无人机搭载的嵌入式设备上。针对此问题,提出了一种改进的基于YOLOv5s的轻量化航拍图像目标检测模型。首先将YOLOv5s主干网络的C3模块BottleNeck替换为轻量级的ShuffleNetv2网络,来降低模型的参数量和计算复杂度;其次在ShuffleNetv2网络中引入跨层信息交叉融合、SE通道注意力机制以及残差连接,来缓解卷积操作导致的特征通道数减少、网络中间层特征图的信息利用不充分问题;再次在YOLOv5s多尺度特征融合网络中引入SE通道注意力机制,来提高网络对关键特征的捕捉和提取能力;最后对改进的目标检测模型采用通道剪枝的方法使模型进一步轻量化。实验结果表明:在NWPU VHR-10数据集上,改进后的模型与YOLOv5s模型相比,目标检测的准确率和平均精度均值分别提升了3.5%,1.9%,模型的参数量和计算量降低了76%,48.7%,模型大小压缩了73.8%,检测速度提升了48%。 展开更多
关键词 目标检测 轻量化网络 YOLOv5s SE通道注意力机制 通道剪枝
下载PDF
基于机器视觉的煤矿巷道人员定位研究 被引量:1
18
作者 王端 刘世平 王利军 《矿山机械》 2024年第1期56-60,共5页
煤矿井巷道存在着环境复杂、能见度低的特点,实时、准确地检测出巷道内的人员及位置是实现煤矿透明开采的前提条件。针对井下巷道内人员识别、定位的问题,提出了基于机器视觉技术的解决方案。通过巷道人员定位数据集训练模型,利用SE (Sq... 煤矿井巷道存在着环境复杂、能见度低的特点,实时、准确地检测出巷道内的人员及位置是实现煤矿透明开采的前提条件。针对井下巷道内人员识别、定位的问题,提出了基于机器视觉技术的解决方案。通过巷道人员定位数据集训练模型,利用SE (Squeeze and Excitation)注意力机制对原始YOLOv5模型做出改进,得到SE-YOLOv5井下人员定位模型,并通过坐标转化求解出相对的三维坐标。试验结果表明,煤矿巷道人员定位模型能够准确地识别巷道内人员的三维坐标,检测精确率超过97.4%。 展开更多
关键词 机器视觉 煤矿巷道 人员识别 se-yolov5
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部