期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
High Step-up SEPIC Converters Based on a Family of Coat Circuit
1
作者 Binxin Zhu Yu Huang +2 位作者 Yao Zhang Guanghui Liu Shihuan Chen 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2023年第5期1753-1764,共12页
A family of coat circuits for SEPIC converters to improve their boost capability is presented.The present coat circuit does not contain any active switches,so the voltage conversion ratio of the presented converters c... A family of coat circuits for SEPIC converters to improve their boost capability is presented.The present coat circuit does not contain any active switches,so the voltage conversion ratio of the presented converters can be enhanced without complicating its gate driver and control circuits.Meanwhile,because of the expansibility of the coat circuit,the number of its basic cells can be adjusted regarding the actual application requirements.Moreover,in comparison with a conventional SEPIC converter,voltage stress on power switch and diodes of the presented topology is lower at the same output voltage,and thus semiconductor components with low on-resistance are chosen to improve conversion efficiency of converter.The operational principle and steady state analysis of the SEPIC converter with one of the proposed coat circuits have been discussed in detail,and a 300W laboratory prototype is implemented to prove the theoretical analysis of presented converter. 展开更多
关键词 Coat circuit high voltage gain low voltage stress sepic converter
原文传递
Maximizing Solar Potential Using the Differential Grey Wolf Algorithm for PV System Optimization
2
作者 Ezhilmathi Nagarathinam Buvana Devaraju +4 位作者 Karthiyayini Jayamoorthy Padmavathi Radhakrishnan Santhana Lakshmi ChandraMohan Vijayakumar Perumal Karthikeyan Balakrishnan 《Energy Engineering》 EI 2024年第8期2129-2142,共14页
Maximum Power Point Tracking(MPPT)is crucial for maximizing the energy output of photovoltaic(PV)systems by continuously adjusting the operating point of the panels to track the point of maximum power production under... Maximum Power Point Tracking(MPPT)is crucial for maximizing the energy output of photovoltaic(PV)systems by continuously adjusting the operating point of the panels to track the point of maximum power production under changing environmental conditions.This work proposes the design of an MPPT system for solar PV installations using the Differential Grey Wolf Optimizer(DGWO).It dynamically adjusts the parameters of the MPPT controller,specifically the duty cycle of the SEPIC converter,to efficiently track the Maximum Power Point(MPP).The proposed system aims to enhance the energy harvesting capability of solar PV systems by optimizing their performance under varying solar irradiance,temperature and shading conditions.Simulation results demonstrate the effectiveness of the DGWO-based MPPT system in maximizing the power output of solar PV installations compared to conventional MPPT methods.This research contributes to the development of advanced MPPT techniques for improving the efficiency and reliability of solar energy systems. 展开更多
关键词 DGWO sepic converter MPPT PV module
下载PDF
A Method to Obtain Complex Transfer Functions of Four Order DC-DC Converters
3
作者 Josep M. Vails Marti Pedro M. Gil Izco 《Journal of Energy and Power Engineering》 2016年第10期615-622,共8页
Two TFs (transfer functions) are needed to analyze switching DC-DC converters in control-voltage mode: the duty-cycle to output-voltage (control to output) and the input-voltage to output-voltage (line to output... Two TFs (transfer functions) are needed to analyze switching DC-DC converters in control-voltage mode: the duty-cycle to output-voltage (control to output) and the input-voltage to output-voltage (line to output). To obtain these TFs a small-signal analysis is required. The CCM (continuous conduction mode) and the DCM (discontinuous conduction mode) analysis are different. When a circuit includes the loss resistances of the components, the number of parameters increases considerably, making manual nodal-loop circuit analysis techniques impractical to obtain the TFs. Moreover, these circuits are bilinear (non-linear) and it is necessary to linearize the equations at a DC operating-point (approximate linearization). Vorp6rian describes a PWM (pulse-width-modulated) switch model that includes all non-linear parts of the DC-DC switching converters. This model can be linearized and replaced on the switching converter schematic leading to a linear circuit. At this point it is possible to use symbolic analysis programs to obtain these TFs or to simply apply numerical values for either the Bode diagrams or the calculation of poles and zeros. Here we describe an application of Ekrem Cangeici's method on X DC-DC converter to obtain control to output and line to output TFs in CCM and DCM including loss resistances. The method presented in this paper is optimized to use in the online publishing platform OctaveRS. Also the control to output TF for PCC (peak current controlled) in CCM is obtained. 展开更多
关键词 Cuk sepic (single ended primary inductance converter) ZETA X DC-DC converters mathematics symbolic computation.
下载PDF
Improved Interleaved Single-Ended Primary Inductor-Converter forSingle-Phase Grid-Connected System
4
作者 T.J.Thomas Thangam K.Muthu Vel 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期3459-3478,共20页
The generation of electricity based on renewable energy sources,parti-cularly Photovoltaic(PV)system has been greatly increased and it is simply insti-gated for both domestic and commercial uses.The power generated fr... The generation of electricity based on renewable energy sources,parti-cularly Photovoltaic(PV)system has been greatly increased and it is simply insti-gated for both domestic and commercial uses.The power generated from the PV system is erratic and hence there is a need for an efficient converter to perform the extraction of maximum power.An improved interleaved Single-ended Primary Inductor-Converter(SEPIC)converter is employed in proposed work to extricate most of power from renewable source.This proposed converter minimizes ripples,reduces electromagnetic interference due tofilter elements and the contin-uous input current improves the power output of PV panel.A Crow Search Algo-rithm(CSA)based Proportional Integral(PI)controller is utilized for controlling the converter switches effectively by optimizing the parameters of PI controller.The optimized PI controller reduces ripples present in Direct Current(DC)vol-tage,maintains constant voltage at proposed converter output and reduces over-shoots with minimum settling and rise time.This voltage is given to single phase grid via 1�Voltage Source Inverter(VSI).The command pulses of 1�VSI are produced by simple PI controller.The response of the proposed converter is thus improved with less input current.After implementing CSA based PI the efficiency of proposed converter obtained is 96%and the Total Harmonic Distor-tion(THD)is found to be 2:4%.The dynamics and closed loop operation is designed and modeled using MATLAB Simulink tool and its behavior is performed. 展开更多
关键词 Improved interleaved DC-DC sepic converter crow search algorithm PI controller voltage source inverter PV array single phase grid
下载PDF
Efficient Supply Current Control Strategies for Bridgeless Interleaved AC-DC Converter
5
作者 R.Sasikala R.Seyezhai 《Computer Systems Science & Engineering》 SCIE EI 2022年第10期175-191,共17页
This paper presents an efficient supply current wave shaping technique for bridgeless interleaved Single Ended Primary Inductor Converter(SEPIC).The SEPIC converter converts an Alternating Current(AC)to Direct Current... This paper presents an efficient supply current wave shaping technique for bridgeless interleaved Single Ended Primary Inductor Converter(SEPIC).The SEPIC converter converts an Alternating Current(AC)to Direct Current(DC)with the boost converter.Power Factor Correction(PFC)is progressively significant to achieve high energy efficiency.The overall system efficiency can be increased as the bridgeless topology has less conduction losses from rectifying bridges.Also,the bridgeless and interleaved techniques are incorporated in this study to achieve better performance.The performance of the system is analyzed on both current control and sensor-less techniques.Different controllers such as Proportional Integral(PI)control,peak current control,Non-Linear Carrier(NLC)control,and sensor-less current control are integrated.All the above controllers are implemented using MATrix LABoratory(MATLAB)/SIMULINK.The performance parameter,namely Power Factor(PF),Total Harmonic Distortion(THD),is computed for both open loop and closed loop condition.The sensor-less current control method is implemented using the DsPIC30F2010 controller.The circuit performance is also verified from the simulation and hardware results.The proposed controller has inbuilt Analog-to-Digital Converter(ADC),Digital-to-Analog Converter(DAC),Pulse Width Modulation(PWM)generator,and provides fast responses. 展开更多
关键词 Light emitting diode power factor correction sepic converter current control method sensor-less method fast Fourier transform analysis for input current
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部