针对简单线性迭代聚类(Simple Linear Iterative Clustering,SLIC)算法对不同图像自适应性差的问题,提出了一种基于皮尔森相关系数的自适应SLIC超像素图像分割算法。首先,通过量化非间隔进行图像预处理,并计算颜色熵作为图像复杂度,从...针对简单线性迭代聚类(Simple Linear Iterative Clustering,SLIC)算法对不同图像自适应性差的问题,提出了一种基于皮尔森相关系数的自适应SLIC超像素图像分割算法。首先,通过量化非间隔进行图像预处理,并计算颜色熵作为图像复杂度,从而确定所需分割的超像素个数。其次,利用皮尔森相关系数作为相似性度量函数。最后,通过纹理特征对类内异常点进行滤除,确保种子点更新的准确性。实验结果表明,在超像素个数相同的情况下,基于皮尔森相关系数的自适应SLIC超像素图像分割算法相比主流超像素分割算法,可以获得更高的边缘命中率以及更低的欠分割率,性能优于LSC(Linear Spectral Clustering)、SLIC和SLIC0(Simple Linear Iterative Clustering Zero)算法。展开更多
简单线性迭代聚类(simple linear iterative clustering,SLIC)超像素分割算法可以直接用于等距柱状投影(equirectangular projection,ERP)的球面图像,但是投影所造成的球面数据局部相关性破坏,会导致SLIC算法在ERP图像的部分区域无法生...简单线性迭代聚类(simple linear iterative clustering,SLIC)超像素分割算法可以直接用于等距柱状投影(equirectangular projection,ERP)的球面图像,但是投影所造成的球面数据局部相关性破坏,会导致SLIC算法在ERP图像的部分区域无法生成合适的超像素分类,从而影响该算法的性能.为解决这一问题,首先对ERP格式的球面图像进行重采样,生成球面上近似均匀分布的球面像元数据;然后在保持球面图像数据局部相关性的基础上,将重采样数据重组为一个新的球面图像二维表示;并基于此二维表示,将球面数据的几何关系整合到SLIC算法中,最终建立球面图像SLIC算法.针对多组ERP图像分别应用SLIC算法和本文提出的算法,对比2种算法在不同聚类数量下的超像素分割结果.实验结果表明:所提出的球面图像SLIC算法在客观质量上优于原SLIC算法,所生成的超像素分割结果不受球面区域变化影响,且轮廓闭合,在球面上表现出了较好的相似性和一致性.展开更多
虚拟成像是在三维空间中投射立体影像的技术,受采集设备、环境以及网络传输等因素的影响,图像易出现分辨率降低问题,导致虚拟成像细节重建效果不理想。为解决上述问题,提出基于VR和小波降噪的复杂虚拟成像重建方法。依据光学原理确定最...虚拟成像是在三维空间中投射立体影像的技术,受采集设备、环境以及网络传输等因素的影响,图像易出现分辨率降低问题,导致虚拟成像细节重建效果不理想。为解决上述问题,提出基于VR和小波降噪的复杂虚拟成像重建方法。依据光学原理确定最小识别距离,结合摄像机采集目标物体多视点图像。利用简单线性迭代聚类(simple linear iterative clustering, SLIC)超像素分割技术优化小波降噪法,完成图像的去噪。基于此,通过VR技术获取全息三维影像重建点坐标和深度距离,并将其投射至透明介质上,实现复杂虚拟成像重建。实验结果表明,研究方法的虚拟成像超像素分割效果更优,平均峰值信噪比为25.5dB,平均结构相似度为0.83,具有较高的应用可靠性。展开更多
针对基于像素的道路提取方法的不足,使用一种基于超像素分割算法(Simple Linear Iterative Clustering,SLIC)和自适应阈值分割算法(OTSU算法是由日本学者OTSU于1979年提出的一种对图像进行二值化的高效算法)相结合的道路提取方法,可以...针对基于像素的道路提取方法的不足,使用一种基于超像素分割算法(Simple Linear Iterative Clustering,SLIC)和自适应阈值分割算法(OTSU算法是由日本学者OTSU于1979年提出的一种对图像进行二值化的高效算法)相结合的道路提取方法,可以较好地解决在遥感图像中分辨率较高所造成的非道路地物对目标的噪声影响。该方法使用SLIC超像素分割算法对影像进行分割处理,再用改进的K-means聚类算法对分割后的超像素影像进行非监督分类,根据GVI值对分类后的影像中的植被及水体信息进行过滤,对过滤后的影像进行基于OTSU的分割,最后对分割影像进行后处理获得完整道路网。经过定性和定量分析后得出,此方法在道路提取上有较好的表现。展开更多
针对变电站电气设备红外监测过程中,获取的红外图像背景复杂而导致故障设备定位不准确、分割难度较大等问题,提出了一种在复杂背景下对故障设备进行定位与整体分割的方法。首先,通过SLIC(Simple Linear Iterative Clustering)超像素算...针对变电站电气设备红外监测过程中,获取的红外图像背景复杂而导致故障设备定位不准确、分割难度较大等问题,提出了一种在复杂背景下对故障设备进行定位与整体分割的方法。首先,通过SLIC(Simple Linear Iterative Clustering)超像素算法对图像进行分割,并对超像素块进行Lab颜色空间转换,根据阈值判断是否存在故障并获取故障区域。然后,选取故障图像中最大联通量的较亮点作为种子,利用最大类间方差原理控制种子数目,通过改进区域生长法获取目标主体设备。最后,将故障区域与目标主体设备进行交集运算,完成对故障电气设备的整体分割。研究结果表明,该方法能有效完成复杂背景下的故障电气设备定位与整体分割。与其他分割方法相比,该方法获取的故障电气设备更加完整准确。展开更多
文摘针对简单线性迭代聚类(Simple Linear Iterative Clustering,SLIC)算法对不同图像自适应性差的问题,提出了一种基于皮尔森相关系数的自适应SLIC超像素图像分割算法。首先,通过量化非间隔进行图像预处理,并计算颜色熵作为图像复杂度,从而确定所需分割的超像素个数。其次,利用皮尔森相关系数作为相似性度量函数。最后,通过纹理特征对类内异常点进行滤除,确保种子点更新的准确性。实验结果表明,在超像素个数相同的情况下,基于皮尔森相关系数的自适应SLIC超像素图像分割算法相比主流超像素分割算法,可以获得更高的边缘命中率以及更低的欠分割率,性能优于LSC(Linear Spectral Clustering)、SLIC和SLIC0(Simple Linear Iterative Clustering Zero)算法。
文摘简单线性迭代聚类(simple linear iterative clustering,SLIC)超像素分割算法可以直接用于等距柱状投影(equirectangular projection,ERP)的球面图像,但是投影所造成的球面数据局部相关性破坏,会导致SLIC算法在ERP图像的部分区域无法生成合适的超像素分类,从而影响该算法的性能.为解决这一问题,首先对ERP格式的球面图像进行重采样,生成球面上近似均匀分布的球面像元数据;然后在保持球面图像数据局部相关性的基础上,将重采样数据重组为一个新的球面图像二维表示;并基于此二维表示,将球面数据的几何关系整合到SLIC算法中,最终建立球面图像SLIC算法.针对多组ERP图像分别应用SLIC算法和本文提出的算法,对比2种算法在不同聚类数量下的超像素分割结果.实验结果表明:所提出的球面图像SLIC算法在客观质量上优于原SLIC算法,所生成的超像素分割结果不受球面区域变化影响,且轮廓闭合,在球面上表现出了较好的相似性和一致性.
文摘虚拟成像是在三维空间中投射立体影像的技术,受采集设备、环境以及网络传输等因素的影响,图像易出现分辨率降低问题,导致虚拟成像细节重建效果不理想。为解决上述问题,提出基于VR和小波降噪的复杂虚拟成像重建方法。依据光学原理确定最小识别距离,结合摄像机采集目标物体多视点图像。利用简单线性迭代聚类(simple linear iterative clustering, SLIC)超像素分割技术优化小波降噪法,完成图像的去噪。基于此,通过VR技术获取全息三维影像重建点坐标和深度距离,并将其投射至透明介质上,实现复杂虚拟成像重建。实验结果表明,研究方法的虚拟成像超像素分割效果更优,平均峰值信噪比为25.5dB,平均结构相似度为0.83,具有较高的应用可靠性。
文摘针对基于像素的道路提取方法的不足,使用一种基于超像素分割算法(Simple Linear Iterative Clustering,SLIC)和自适应阈值分割算法(OTSU算法是由日本学者OTSU于1979年提出的一种对图像进行二值化的高效算法)相结合的道路提取方法,可以较好地解决在遥感图像中分辨率较高所造成的非道路地物对目标的噪声影响。该方法使用SLIC超像素分割算法对影像进行分割处理,再用改进的K-means聚类算法对分割后的超像素影像进行非监督分类,根据GVI值对分类后的影像中的植被及水体信息进行过滤,对过滤后的影像进行基于OTSU的分割,最后对分割影像进行后处理获得完整道路网。经过定性和定量分析后得出,此方法在道路提取上有较好的表现。
文摘针对变电站电气设备红外监测过程中,获取的红外图像背景复杂而导致故障设备定位不准确、分割难度较大等问题,提出了一种在复杂背景下对故障设备进行定位与整体分割的方法。首先,通过SLIC(Simple Linear Iterative Clustering)超像素算法对图像进行分割,并对超像素块进行Lab颜色空间转换,根据阈值判断是否存在故障并获取故障区域。然后,选取故障图像中最大联通量的较亮点作为种子,利用最大类间方差原理控制种子数目,通过改进区域生长法获取目标主体设备。最后,将故障区域与目标主体设备进行交集运算,完成对故障电气设备的整体分割。研究结果表明,该方法能有效完成复杂背景下的故障电气设备定位与整体分割。与其他分割方法相比,该方法获取的故障电气设备更加完整准确。