采用时频分析和支持向量机(SVM)相结合,提出一种压缩机故障识别新方法。首先利用Labview软件平台,对压缩机振动信号进行时频分析;然后提取出空气压缩机故障信号的特征向量,组成训练样本和测试样本;最后使用一对一方法构造成多元支持向...采用时频分析和支持向量机(SVM)相结合,提出一种压缩机故障识别新方法。首先利用Labview软件平台,对压缩机振动信号进行时频分析;然后提取出空气压缩机故障信号的特征向量,组成训练样本和测试样本;最后使用一对一方法构造成多元支持向量机分类器,利用序列最小优化(S M O)算法对故障样本进行训练,实现了压缩机的故障识别。实验测试表明,该分类器有较高故障诊断效率且性能良好,适合压缩机的故障识别。展开更多
文摘采用时频分析和支持向量机(SVM)相结合,提出一种压缩机故障识别新方法。首先利用Labview软件平台,对压缩机振动信号进行时频分析;然后提取出空气压缩机故障信号的特征向量,组成训练样本和测试样本;最后使用一对一方法构造成多元支持向量机分类器,利用序列最小优化(S M O)算法对故障样本进行训练,实现了压缩机的故障识别。实验测试表明,该分类器有较高故障诊断效率且性能良好,适合压缩机的故障识别。