期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
超球体单类支持向量机的SMO训练算法 被引量:10
1
作者 徐图 罗瑜 何大可 《计算机科学》 CSCD 北大核心 2008年第6期178-180,共3页
由于One-class支持向量机能用于无监督学习,被广泛用于信息安全、图像识别等领域中。而超球体One-class支持向量机能生成一个合适的球体,将训练样本包含其中,故更适合于呈球形分布的样本学习。但由于超球体One-class支持向量机没有一种... 由于One-class支持向量机能用于无监督学习,被广泛用于信息安全、图像识别等领域中。而超球体One-class支持向量机能生成一个合适的球体,将训练样本包含其中,故更适合于呈球形分布的样本学习。但由于超球体One-class支持向量机没有一种快速训练算法,使其在应用中受到限制。SMO算法成功地训练了标准SVM,其训练思想也可用于超球体One-class支持向量机的训练。本文提出了超球体One-class支持向量机的SMO训练算法,并对其空间和时间复杂度进行了分析。实验表明,这种算法能迅速、有效地训练超球体One-class支持向量机。 展开更多
关键词 无监督学习 超球体One-class支持向量机 smo训练算法
下载PDF
HSMC-SVM的二次逼近快速训练算法 被引量:2
2
作者 徐图 罗瑜 何大可 《电子与信息学报》 EI CSCD 北大核心 2008年第11期2746-2749,共4页
HSMC-SVM是一种直接型高速多类支持向量机,适合用于类别较多的分类场合,但由于SMO算法采用经验方法选择工作集,使得在用SMO算法训练HSMC-SVM时,收敛速度较慢。为提高HSMC-SVM的收敛速度,该文提出用基于二次逼近的可行方向法来训练HSMC-S... HSMC-SVM是一种直接型高速多类支持向量机,适合用于类别较多的分类场合,但由于SMO算法采用经验方法选择工作集,使得在用SMO算法训练HSMC-SVM时,收敛速度较慢。为提高HSMC-SVM的收敛速度,该文提出用基于二次逼近的可行方向法来训练HSMC-SVM,并使用了样本缩减策略。实验表明,这种方法可以有效提高HSMC-SVM的收敛速度,其收敛速度已经超过了基于libsvm的组合多类支持向量机,完全可以用于分类类别多、样本数量大的分类场合。 展开更多
关键词 超球体多类支持向量机 smo训练算法 工作集选择:二次逼近
下载PDF
超球体多类支持向量机理论 被引量:8
3
作者 徐图 何大可 《控制理论与应用》 EI CAS CSCD 北大核心 2009年第11期1293-1297,共5页
目前的多类分类器大多是经二分类器组合而成的,存在训练速度较慢的问题,在分类类别多的时候,会遇到很大困难,超球体多类支持向量机将超球体单类支持向量机扩展到多类问题,由于每类样本只参与一个超球体支持向量机的训练,因此,这是一种... 目前的多类分类器大多是经二分类器组合而成的,存在训练速度较慢的问题,在分类类别多的时候,会遇到很大困难,超球体多类支持向量机将超球体单类支持向量机扩展到多类问题,由于每类样本只参与一个超球体支持向量机的训练,因此,这是一种直接多类分类器,训练效率明显提高.为了有效训练超球体多类支持向量机,利用SMO算法思想,提出了超球体支持向量机的快速训练算法.同时对超球体多类支持向量机的推广能力进行了理论上的估计.数值实验表明,在分类类别较多的情况,这种分类器的训练速度有很大提高,非常适合解决类别数较多的分类问题.超球体多类支持向量机为研究快速直接多类分类器提供了新的思路. 展开更多
关键词 支持向量机 多类支持向量机 smo训练算法 推广性能 超球体多类支持向量机
下载PDF
最小二乘超球多类支持向量机 被引量:1
4
作者 徐图 《系统仿真学报》 CAS CSCD 北大核心 2009年第23期7468-7472,共5页
超球体多类支持向量机(HSMC-SVM)是一种直接型多类分类器,具有训练速度快,检测效率高的优点,但由于HSMC-SVM使用一阶范数软间隔作为目标函数的惩罚项,使得其训练精度受到一定影响,为了提高HSMC-SVM训练精度,将最小二乘法引入到HSMC-SVM... 超球体多类支持向量机(HSMC-SVM)是一种直接型多类分类器,具有训练速度快,检测效率高的优点,但由于HSMC-SVM使用一阶范数软间隔作为目标函数的惩罚项,使得其训练精度受到一定影响,为了提高HSMC-SVM训练精度,将最小二乘法引入到HSMC-SVM中,提出了最小二乘超球多类支持向量机(LSHS-MCSVM)的概念,并且分析了它的训练算法和判决规则,从而形成了完整的LSHS-MCSVM分类理论。实验表明,LSHS-MCSVM无论在训练速度上还是在泛化性能上都要优于HSMC-SVM,适合于分类类别多,样本数量大的多分类场合。 展开更多
关键词 支持向量机 多类支持向量机 smo训练算法 工作集选择 最小二乘超球多类支持向量机
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部