In this paper, a new class of three term memory gradient method with non-monotone line search technique for unconstrained optimization is presented. Global convergence properties of the new methods are discussed. Comb...In this paper, a new class of three term memory gradient method with non-monotone line search technique for unconstrained optimization is presented. Global convergence properties of the new methods are discussed. Combining the quasi-Newton method with the new method, the former is modified to have global convergence property. Numerical results show that the new algorithm is efficient.展开更多
In this paper we consider the global convergence of any conjugate gradient method of the form d1=-g1,dk+1=-gk+1+βkdk(k≥1)with any βk satisfying sume conditions,and with the strong wolfe line search conditions.Under...In this paper we consider the global convergence of any conjugate gradient method of the form d1=-g1,dk+1=-gk+1+βkdk(k≥1)with any βk satisfying sume conditions,and with the strong wolfe line search conditions.Under the convex assumption on the objective function,we preve the descenf property and the global convergence of this method.展开更多
In this paper, we provide and analyze a new scaled conjugate gradient method and its performance, based on the modified secant equation of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method and on a new modified nonmo...In this paper, we provide and analyze a new scaled conjugate gradient method and its performance, based on the modified secant equation of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method and on a new modified nonmonotone line search technique. The method incorporates the modified BFGS secant equation in an effort to include the second order information of the objective function. The new secant equation has both gradient and function value information, and its update formula inherits the positive definiteness of Hessian approximation for general convex function. In order to improve the likelihood of finding a global optimal solution, we introduce a new modified nonmonotone line search technique. It is shown that, for nonsmooth convex problems, the proposed algorithm is globally convergent. Numerical results show that this new scaled conjugate gradient algorithm is promising and efficient for solving not only convex but also some large scale nonsmooth nonconvex problems in the sense of the Dolan-Moré performance profiles.展开更多
This paper puts forward a two-parameter family of nonlinear conjugate gradient(CG)method without line search for solving unconstrained optimization problem.The main feature of this method is that it does not rely on a...This paper puts forward a two-parameter family of nonlinear conjugate gradient(CG)method without line search for solving unconstrained optimization problem.The main feature of this method is that it does not rely on any line search and only requires a simple step size formula to always generate a sufficient descent direction.Under certain assumptions,the proposed method is proved to possess global convergence.Finally,our method is compared with other potential methods.A large number of numerical experiments show that our method is more competitive and effective.展开更多
In this paper,an efficient conjugate gradient method is given to solve the general unconstrained optimization problems,which can guarantee the sufficient descent property and the global convergence with the strong Wol...In this paper,an efficient conjugate gradient method is given to solve the general unconstrained optimization problems,which can guarantee the sufficient descent property and the global convergence with the strong Wolfe line search conditions.Numerical results show that the new method is efficient and stationary by comparing with PRP+ method,so it can be widely used in scientific computation.展开更多
Recently, Gilbert and Nocedal([3]) investigated global convergence of conjugate gradient methods related to Polak-Ribiere formular, they restricted beta(k) to non-negative value. [5] discussed the same problem as that...Recently, Gilbert and Nocedal([3]) investigated global convergence of conjugate gradient methods related to Polak-Ribiere formular, they restricted beta(k) to non-negative value. [5] discussed the same problem as that in [3] and relaxed beta(k) to be negative with the objective function being convex. This paper allows beta(k) to be selected in a wider range than [5]. Especially, the global convergence of the corresponding algorithm without sufficient decrease condition is proved.展开更多
This paper discusses the global convergence of a class of nonmonotone conjugate gra- dient methods(NM methods) for nonconvex object functions.This class of methods includes the nonmonotone counterpart of modified Po...This paper discusses the global convergence of a class of nonmonotone conjugate gra- dient methods(NM methods) for nonconvex object functions.This class of methods includes the nonmonotone counterpart of modified Polak- Ribière method and modified Hestenes- Stiefel method as special cases展开更多
A hybrid method of the Polak-Ribière-Polyak (PRP) method and the Wei-Yao-Liu (WYL) method is proposed for unconstrained optimization pro- blems, which possesses the following properties: i) This method inherits a...A hybrid method of the Polak-Ribière-Polyak (PRP) method and the Wei-Yao-Liu (WYL) method is proposed for unconstrained optimization pro- blems, which possesses the following properties: i) This method inherits an important property of the well known PRP method: the tendency to turn towards the steepest descent direction if a small step is generated away from the solution, preventing a sequence of tiny steps from happening;ii) The scalar holds automatically;iii) The global convergence with some line search rule is established for nonconvex functions. Numerical results show that the method is effective for the test problems.展开更多
Y Liu and C Storey(1992)proposed the famous LS conjugate gradient method which has good numerical results.However,the LS method has very weak convergence under the Wolfe-type line search.In this paper,we give a new de...Y Liu and C Storey(1992)proposed the famous LS conjugate gradient method which has good numerical results.However,the LS method has very weak convergence under the Wolfe-type line search.In this paper,we give a new descent gradient method based on the LS method.It can guarantee the sufficient descent property at each iteration and the global convergence under the strong Wolfe line search.Finally,we also present extensive preliminary numerical experiments to show the efficiency of the proposed method by comparing with the famous PRP^+method.展开更多
In this work we consider an extension of the classical scalar-valued projected gradient method for multiobjective problems on convex sets.As in Fazzio et al.(Optim Lett 13:1365-1379,2019)a parameter which controls the...In this work we consider an extension of the classical scalar-valued projected gradient method for multiobjective problems on convex sets.As in Fazzio et al.(Optim Lett 13:1365-1379,2019)a parameter which controls the step length is considered and an updating rule based on the spectral gradient method from the scalar case is proposed.In the present paper,we consider an extension of the traditional nonmonotone approach of Grippo et al.(SIAM J Numer Anal 23:707-716,1986)based on the maximum of some previous function values as suggested in Mita et al.(J Glob Optim 75:539-559,2019)for unconstrained multiobjective optimization problems.We prove the accumulation points of sequences generated by the proposed algorithm,if they exist,are stationary points of the original problem.Numerical experiments are reported.展开更多
In this paper, a new conjugate gradient formula and its algorithm for solving unconstrained optimization problems are proposed. The given formula satisfies with satisfying the descent condition. Under the Grippo-Lucid...In this paper, a new conjugate gradient formula and its algorithm for solving unconstrained optimization problems are proposed. The given formula satisfies with satisfying the descent condition. Under the Grippo-Lucidi line search, the global convergence property of the given method is discussed. The numerical results show that the new method is efficient for the given test problems.展开更多
文摘In this paper, a new class of three term memory gradient method with non-monotone line search technique for unconstrained optimization is presented. Global convergence properties of the new methods are discussed. Combining the quasi-Newton method with the new method, the former is modified to have global convergence property. Numerical results show that the new algorithm is efficient.
基金This work is supported by the National Natural Science Foundation of China
文摘In this paper we consider the global convergence of any conjugate gradient method of the form d1=-g1,dk+1=-gk+1+βkdk(k≥1)with any βk satisfying sume conditions,and with the strong wolfe line search conditions.Under the convex assumption on the objective function,we preve the descenf property and the global convergence of this method.
文摘In this paper, we provide and analyze a new scaled conjugate gradient method and its performance, based on the modified secant equation of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method and on a new modified nonmonotone line search technique. The method incorporates the modified BFGS secant equation in an effort to include the second order information of the objective function. The new secant equation has both gradient and function value information, and its update formula inherits the positive definiteness of Hessian approximation for general convex function. In order to improve the likelihood of finding a global optimal solution, we introduce a new modified nonmonotone line search technique. It is shown that, for nonsmooth convex problems, the proposed algorithm is globally convergent. Numerical results show that this new scaled conjugate gradient algorithm is promising and efficient for solving not only convex but also some large scale nonsmooth nonconvex problems in the sense of the Dolan-Moré performance profiles.
基金Supported by 2023 Inner Mongolia University of Finance and Economics,General Scientific Research for Universities directly under Inner Mon‐golia,China (NCYWT23026)2024 High-quality Research Achievements Cultivation Fund Project of Inner Mongolia University of Finance and Economics,China (GZCG2479)。
文摘This paper puts forward a two-parameter family of nonlinear conjugate gradient(CG)method without line search for solving unconstrained optimization problem.The main feature of this method is that it does not rely on any line search and only requires a simple step size formula to always generate a sufficient descent direction.Under certain assumptions,the proposed method is proved to possess global convergence.Finally,our method is compared with other potential methods.A large number of numerical experiments show that our method is more competitive and effective.
基金Supported by the Fund of Chongqing Education Committee(KJ091104)
文摘In this paper,an efficient conjugate gradient method is given to solve the general unconstrained optimization problems,which can guarantee the sufficient descent property and the global convergence with the strong Wolfe line search conditions.Numerical results show that the new method is efficient and stationary by comparing with PRP+ method,so it can be widely used in scientific computation.
文摘Recently, Gilbert and Nocedal([3]) investigated global convergence of conjugate gradient methods related to Polak-Ribiere formular, they restricted beta(k) to non-negative value. [5] discussed the same problem as that in [3] and relaxed beta(k) to be negative with the objective function being convex. This paper allows beta(k) to be selected in a wider range than [5]. Especially, the global convergence of the corresponding algorithm without sufficient decrease condition is proved.
基金Supported by the National Natural Science Foundation of China(1 0 1 6 1 0 0 2 ) and Guangxi Natural Sci-ence Foundation (0 1 3 5 0 0 4 )
文摘This paper discusses the global convergence of a class of nonmonotone conjugate gra- dient methods(NM methods) for nonconvex object functions.This class of methods includes the nonmonotone counterpart of modified Polak- Ribière method and modified Hestenes- Stiefel method as special cases
文摘A hybrid method of the Polak-Ribière-Polyak (PRP) method and the Wei-Yao-Liu (WYL) method is proposed for unconstrained optimization pro- blems, which possesses the following properties: i) This method inherits an important property of the well known PRP method: the tendency to turn towards the steepest descent direction if a small step is generated away from the solution, preventing a sequence of tiny steps from happening;ii) The scalar holds automatically;iii) The global convergence with some line search rule is established for nonconvex functions. Numerical results show that the method is effective for the test problems.
基金Supported by The Youth Project Foundation of Chongqing Three Gorges University(13QN17)Supported by the Fund of Scientific Research in Southeast University(the Support Project of Fundamental Research)
文摘Y Liu and C Storey(1992)proposed the famous LS conjugate gradient method which has good numerical results.However,the LS method has very weak convergence under the Wolfe-type line search.In this paper,we give a new descent gradient method based on the LS method.It can guarantee the sufficient descent property at each iteration and the global convergence under the strong Wolfe line search.Finally,we also present extensive preliminary numerical experiments to show the efficiency of the proposed method by comparing with the famous PRP^+method.
基金ANPCyT(Nos.PICT 2016-0921 and PICT 2019-02172),Argentina.
文摘In this work we consider an extension of the classical scalar-valued projected gradient method for multiobjective problems on convex sets.As in Fazzio et al.(Optim Lett 13:1365-1379,2019)a parameter which controls the step length is considered and an updating rule based on the spectral gradient method from the scalar case is proposed.In the present paper,we consider an extension of the traditional nonmonotone approach of Grippo et al.(SIAM J Numer Anal 23:707-716,1986)based on the maximum of some previous function values as suggested in Mita et al.(J Glob Optim 75:539-559,2019)for unconstrained multiobjective optimization problems.We prove the accumulation points of sequences generated by the proposed algorithm,if they exist,are stationary points of the original problem.Numerical experiments are reported.
文摘In this paper, a new conjugate gradient formula and its algorithm for solving unconstrained optimization problems are proposed. The given formula satisfies with satisfying the descent condition. Under the Grippo-Lucidi line search, the global convergence property of the given method is discussed. The numerical results show that the new method is efficient for the given test problems.