针对Stewart平台的六自由度(six degrees of freedom,6-DOF)轨迹跟踪问题,提出一种基于神经网络的非奇异终端滑模控制方法并应用于Stewart平台的位置姿态控制中。通过分析Stewart平台的位置反解和速度反解,建立运动学方程,利用牛顿-欧...针对Stewart平台的六自由度(six degrees of freedom,6-DOF)轨迹跟踪问题,提出一种基于神经网络的非奇异终端滑模控制方法并应用于Stewart平台的位置姿态控制中。通过分析Stewart平台的位置反解和速度反解,建立运动学方程,利用牛顿-欧拉方程建立动力学方程,并结合加速度反解得到了平台的状态空间表达式;基于非奇异滑模面函数,设计非奇异终端滑模控制律。考虑到径向基函数(radial Basis function,RBF)神经网络的逼近特性,采用RBF神经网络对模型未知部分进行自适应逼近,并利用Lyapunov第二法设计了自适应律;通过仿真证明控制器设计的有效性。仿真结果表明,相比于比例积分微分(proportional integral derivative,PID)控制器,提出的RBF神经网络非奇异终端滑模控制器具有更好的轨迹跟踪精度和动态特性。展开更多
针对星上微振动主动隔离/抑制的要求,以VCM(voice coil motor)作动器Stewart平台为控制装置,通过对其动力学模型解耦将控制转化为SISO(single input single output)问题;分析了Skyhook控制方法的隔振效果及其对抑振的局限性,在控制系统...针对星上微振动主动隔离/抑制的要求,以VCM(voice coil motor)作动器Stewart平台为控制装置,通过对其动力学模型解耦将控制转化为SISO(single input single output)问题;分析了Skyhook控制方法的隔振效果及其对抑振的局限性,在控制系统中加入了PFF(positive force feedback)控制回路,并引入加速度反馈环节以提高系统的鲁棒稳定性,形成一种振动主动隔离/抑制控制方法;利用Stewart平台的单杆开展了基础扫频激励和负载单频直接干扰共同作用下的S-DOF(single degree of freedom)微振动主动隔离/抑振控制实验,建立了Stewart平台刚/柔混合动力学模型并通过仿真研究了6-DOF振动主动隔离/抑振控制效果。实验和仿真结果表明:该方法可实现良好的振动主动隔离/抑制效果且性能稳定。展开更多
文摘针对Stewart平台的六自由度(six degrees of freedom,6-DOF)轨迹跟踪问题,提出一种基于神经网络的非奇异终端滑模控制方法并应用于Stewart平台的位置姿态控制中。通过分析Stewart平台的位置反解和速度反解,建立运动学方程,利用牛顿-欧拉方程建立动力学方程,并结合加速度反解得到了平台的状态空间表达式;基于非奇异滑模面函数,设计非奇异终端滑模控制律。考虑到径向基函数(radial Basis function,RBF)神经网络的逼近特性,采用RBF神经网络对模型未知部分进行自适应逼近,并利用Lyapunov第二法设计了自适应律;通过仿真证明控制器设计的有效性。仿真结果表明,相比于比例积分微分(proportional integral derivative,PID)控制器,提出的RBF神经网络非奇异终端滑模控制器具有更好的轨迹跟踪精度和动态特性。
文摘针对星上微振动主动隔离/抑制的要求,以VCM(voice coil motor)作动器Stewart平台为控制装置,通过对其动力学模型解耦将控制转化为SISO(single input single output)问题;分析了Skyhook控制方法的隔振效果及其对抑振的局限性,在控制系统中加入了PFF(positive force feedback)控制回路,并引入加速度反馈环节以提高系统的鲁棒稳定性,形成一种振动主动隔离/抑制控制方法;利用Stewart平台的单杆开展了基础扫频激励和负载单频直接干扰共同作用下的S-DOF(single degree of freedom)微振动主动隔离/抑振控制实验,建立了Stewart平台刚/柔混合动力学模型并通过仿真研究了6-DOF振动主动隔离/抑振控制效果。实验和仿真结果表明:该方法可实现良好的振动主动隔离/抑制效果且性能稳定。