Introduced by the late Prime Minister Shinzo Abe and inherited and developed by Fumio Kishida,Japan's“Indo–Pacific”strategy has gradually taken shape.This strategy can be deemed a broad vision,covering a wide r...Introduced by the late Prime Minister Shinzo Abe and inherited and developed by Fumio Kishida,Japan's“Indo–Pacific”strategy has gradually taken shape.This strategy can be deemed a broad vision,covering a wide range of topics and an extensive network of partners,with a strong trend of pan-securitization.It is a comprehensive inter national st rateg y based on Japan's alliance policy and China containment strategy,following a global,security-oriented approach.Driven by considerations such as maintaining its economic status,realizing its long-cherished dream of becoming a political powerhouse,and containing China,Japan has stepped up its“Indo–Pacific”strategy,which may influence global development,undermine regional maritime security,and impede China's reunification process.Meanwhile,Japan's“Indo–Pacific”strategy faces the triple challenge of a strategic overdraft,the unstable economic foundations,and the weak external support.These constraints may not suffice to reverse the direction of Japan's“Indo–Pacific”strategy in the short term but will limit its effectiveness.展开更多
Self-serving,rational agents sometimes cooperate to their mutual benefit.The two-player iterated prisoner′s dilemma game is a model for including the emergence of cooperation.It is generally believed that there is no...Self-serving,rational agents sometimes cooperate to their mutual benefit.The two-player iterated prisoner′s dilemma game is a model for including the emergence of cooperation.It is generally believed that there is no simple ultimatum strategy which a player can control the return of the other participants.The zero-determinant strategy in the iterated prisoner′s dilemma dramatically expands our understanding of the classic game by uncovering strategies that provide a unilateral advantage to sentient players pitted against unwitting opponents.However,strategies in the prisoner′s dilemma game are only two strategies.Are there these results for general multi-strategy games?To address this question,the paper develops a theory for zero-determinant strategies for multi-strategy games,with any number of strategies.The analytical results exhibit a similar yet different scenario to the case of two-strategy games.The results are also applied to the Snowdrift game,the Hawk-Dove game and the Chicken game.展开更多
The pursuit-evasion game models the strategic interaction among players, attracting attention in many realistic scenarios, such as missile guidance, unmanned aerial vehicles, and target defense. Existing studies mainl...The pursuit-evasion game models the strategic interaction among players, attracting attention in many realistic scenarios, such as missile guidance, unmanned aerial vehicles, and target defense. Existing studies mainly concentrate on the cooperative pursuit of multiple players in two-dimensional pursuit-evasion games. However, these approaches can hardly be applied to practical situations where players usually move in three-dimensional space with a three-degree-of-freedom control. In this paper,we make the first attempt to investigate the equilibrium strategy of the realistic pursuit-evasion game, in which the pursuer follows a three-degree-of-freedom control, and the evader moves freely. First, we describe the pursuer's three-degree-of-freedom control and the evader's relative coordinate. We then rigorously derive the equilibrium strategy by solving the retrogressive path equation according to the Hamilton-Jacobi-Bellman-Isaacs(HJBI) method, which divides the pursuit-evasion process into the navigation and acceleration phases. Besides, we analyze the maximum allowable speed for the pursuer to capture the evader successfully and provide the strategy with which the evader can escape when the pursuer's speed exceeds the threshold. We further conduct comparison tests with various unilateral deviations to verify that the proposed strategy forms a Nash equilibrium.展开更多
As users’access to the network has evolved into the acquisition of mass contents instead of IP addresses,the IP network architecture based on end-to-end communication cannot meet users’needs.Therefore,the Informatio...As users’access to the network has evolved into the acquisition of mass contents instead of IP addresses,the IP network architecture based on end-to-end communication cannot meet users’needs.Therefore,the Information-Centric Networking(ICN)came into being.From a technical point of view,ICN is a promising future network architecture.Researching and customizing a reasonable pricing mechanism plays a positive role in promoting the deployment of ICN.The current research on ICN pricing mechanism is focused on paid content.Therefore,we study an ICN pricing model for free content,which uses game theory based on Nash equilibrium to analysis.In this work,advertisers are considered,and an advertiser model is established to describe the economic interaction between advertisers and ICN entities.This solution can formulate the best pricing strategy for all ICN entities and maximize the benefits of each entity.Our extensive analysis and numerical results show that the proposed pricing framework is significantly better than existing solutions when it comes to free content.展开更多
Nickel(Ni)-rich cathode materials have become promising candidates for the next-generation electrical vehicles due to their high specific capacity.However,the poor thermodynamic stability(including cyclic performance ...Nickel(Ni)-rich cathode materials have become promising candidates for the next-generation electrical vehicles due to their high specific capacity.However,the poor thermodynamic stability(including cyclic performance and safety performance or thermal stability)will restrain their wide commercial application.Herein,a single-crystal Ni-rich Li Ni_(0.83)Co_(0.12)Mn_(0.05)O_(2) cathode material is synthesized and modified by a dual-substitution strategy in which the high-valence doping element improves the structural stability by forming strong metal–oxygen binding forces,while the low-valence doping element eliminates high Li^(+)/Ni^(2+)mixing.As a result,this synergistic dual substitution can effectively suppress H2-H3 phase transition and generation of microcracks,thereby ultimately improving the thermodynamic stability of Ni-rich cathode material.Notably,the dual-doped Ni-rich cathode delivers an extremely high capacity retention of 81%after 250 cycles(vs.Li/Li+)in coin-type half cells and 87%after 1000 cycles(vs.graphite/Li^(+))in pouch-type full cells at a high temperature of 55℃.More impressively,the dual-doped sample exhibits excellent thermal stability,which demonstrates a higher thermal runaway temperature and a lower calorific value.The synergetic effects of this dual-substitution strategy pave a new pathway for addressing the critical challenges of Ni-rich cathode at high temperatures,which will significantly advance the high-energy-density and high-safety cathodes to the subsequent commercialization.展开更多
Ulva prolifera is the causative species of the annually occurring large-scale green tides in China since 2007.Its specific biological features on reproductivity strategies,as well as intra-species genetic diversity,ar...Ulva prolifera is the causative species of the annually occurring large-scale green tides in China since 2007.Its specific biological features on reproductivity strategies,as well as intra-species genetic diversity,are still largely unknown,especially at the genome level,despite their importance in understanding the formation and outbreak of massive green tides.In the present study,the restriction site-associated DNA genotyping approach(2b-RAD)was adopted to identify the genome-wide single-nucleotide polymorphisms(SNPs)of 54 individual thalli including samples collected from Subei Shoal in 2019 and Qingdao coast from 2019 to 2021.SNPs genotype results revealed that most of the thalli in 2019 and 2020 were haploid gametophytes,while only half of the thalli were gametophytes in 2021,indicating flexibility in the reproductive strategies for the formation of the green tides among different years and the dominance of asexual and vegetative reproductive mode for the floating period.Besides,population analysis was conducted,and it revealed a very low genetic diversity among samples from Subei Shoal and the Qingdao coast in the same year and a higher divergence among samples in different years.The results showed the efficiency of 2b-RAD in the exploration of SNPs in U.prolifera and provided the first genome-wide scale evidence for the origin of the large-scale green tides on the Qingdao coast.This study improved our understanding of the reproductive strategy and genetic diversity of the green tide causative species and will help further reveal the biological causes of the green tide in China.展开更多
The high-temperature pyrolysis process for preparing M–N–C single-atom catalyst usually results in high heterogeneity in product structure concurrently contains multiscale metal phases from single atoms(SAs),atomic ...The high-temperature pyrolysis process for preparing M–N–C single-atom catalyst usually results in high heterogeneity in product structure concurrently contains multiscale metal phases from single atoms(SAs),atomic clusters to nanoparticles.Therefore,understanding the interactions among these components,especially the synergistic effects between single atomic sites and cluster sites,is crucial for improving the oxygen reduction reaction(ORR)activity of M–N–C catalysts.Accordingly,herein,we constructed a model catalyst composed of both atomically dispersed FeN4 SA sites and adjacent Fe clusters through a site occupation strategy.We found that the Fe clusters can optimize the adsorption strength of oxygen reduction intermediates on FeN4 SA sites by introducing electron-withdrawing–OH ligands and decreasing the d-band center of the Fe center.The as-developed catalyst exhibits encouraging ORR activity with halfwave potentials(E1/2)of 0.831 and 0.905 V in acidic and alkaline media,respectively.Moreover,the catalyst also represents excellent durability exceeding that of Fe–N–C SA catalyst.The practical application of Fe(Cd)–CNx catalyst is further validated by its superior activity and stability in a metalair battery device.Our work exhibits the great potential of synergistic effects between multiphase metal species for improvements of singleatom site catalysts.展开更多
This paper concerns ultimately bounded output-feedback control problems for networked systems with unknown nonlinear dynamics. Sensor-to-observer signal transmission is facilitated over networks that has communication...This paper concerns ultimately bounded output-feedback control problems for networked systems with unknown nonlinear dynamics. Sensor-to-observer signal transmission is facilitated over networks that has communication constraints.These transmissions are carried out over an unreliable communication channel. In order to enhance the utilization rate of measurement data, a buffer-aided strategy is novelly employed to store historical measurements when communication networks are inaccessible. Using the neural network technique, a novel observer-based controller is introduced to address effects of signal transmission behaviors and unknown nonlinear dynamics.Through the application of stochastic analysis and Lyapunov stability, a joint framework is constructed for analyzing resultant system performance under the introduced controller. Subsequently, existence conditions for the desired output-feedback controller are delineated. The required parameters for the observerbased controller are then determined by resolving some specific matrix inequalities. Finally, a simulation example is showcased to confirm method efficacy.展开更多
The emergence of Li–Mg hybrid batteries has been receiving attention,owing to their enhanced electrochemical kinetics and reduced overpotential.Nevertheless,the persistent challenge of uneven Mg electrodeposition rem...The emergence of Li–Mg hybrid batteries has been receiving attention,owing to their enhanced electrochemical kinetics and reduced overpotential.Nevertheless,the persistent challenge of uneven Mg electrodeposition remains a significant impediment to their practical integration.Herein,we developed an ingenious approach that centered around epitaxial electrocrystallization and meticulously controlled growth of magnesium crystals on a specialized MgMOF substrate.The chosen MgMOF substrate demonstrated a robust affinity for magnesium and showed minimal lattice misfit with Mg,establishing the crucial prerequisites for successful heteroepitaxial electrocrystallization.Moreover,the incorporation of periodic electric fields and successive nanochannels within the MgMOF structure created a spatially confined environment that considerably promoted uniform magnesium nucleation at the molecular scale.Taking inspiration from the“blockchain”concept prevalent in the realm of big data,we seamlessly integrated a conductive polypyrrole framework,acting as a connecting“chain,”to interlink the“blocks”comprising the MgMOF cavities.This innovative design significantly amplified charge‐transfer efficiency,thereby increasing overall electrochemical kinetics.The resulting architecture(MgMOF@PPy@CC)served as an exceptional host for heteroepitaxial Mg electrodeposition,showcasing remarkable electrostripping/plating kinetics and excellent cycling performance.Surprisingly,a symmetrical cell incorporating the MgMOF@PPy@CC electrode demonstrated impressive stability even under ultrahigh current density conditions(10mAcm^(–2)),maintaining operation for an extended 1200 h,surpassing previously reported benchmarks.Significantly,on coupling the MgMOF@PPy@CC anode with a Mo_(6)S_(8) cathode,the assembled battery showed an extended lifespan of 10,000 cycles at 70 C,with an outstanding capacity retention of 96.23%.This study provides a fresh perspective on the rational design of epitaxial electrocrystallization driven by metal–organic framework(MOF)substrates,paving the way toward the advancement of cuttingedge batteries.展开更多
Improving the reversibility of anionic redox and inhibiting irreversible oxygen evolution are the main challenges in the application of high reversible capacity Li-rich Mn-based cathode materials.A facile synchronous ...Improving the reversibility of anionic redox and inhibiting irreversible oxygen evolution are the main challenges in the application of high reversible capacity Li-rich Mn-based cathode materials.A facile synchronous lithiation strategy combining the advantages of yttrium doping and LiYO_(2) surface coating is proposed.Yttrium doping effectively suppresses the oxygen evolution during the delithiation process by increasing the energy barrier of oxygen evolution reaction through strong Y–O bond energy.LiYO_(2) nanocoating has the function of structural constraint and protection,that protecting the lattice oxygen exposed to the surface,thus avoiding irreversible oxidation.As an Li^(+) conductor,LiYO_(2) nano-coating can provide a fast Li^(+) transfer channel,which enables the sample to have excellent rate performance.The synergistic effect of Y doping and nano-LiYO_(2) coating integration suppresses the oxygen release from the surface,accelerates the diffusion of Li^(+)from electrolyte to electrode and decreases the interfacial side reactions,enabling the lithium ion batteries to obtain good electrochemical performance.The lithium-ion full cell employing the Y-1 sample(cathode)and commercial graphite(anode)exhibit an excellent specific energy density of 442.9 Wh kg^(-1) at a current density of 0.1C,with very stable safety performance,which can be used in a wide temperature range(60 to-15℃)stable operation.This result illustrates a new integration strategy for advanced cathode materials to achieve high specific energy density.展开更多
As a representative emerging machine learning technique, federated learning(FL) has gained considerable popularity for its special feature of “making data available but not visible”. However, potential problems rema...As a representative emerging machine learning technique, federated learning(FL) has gained considerable popularity for its special feature of “making data available but not visible”. However, potential problems remain, including privacy breaches, imbalances in payment, and inequitable distribution.These shortcomings let devices reluctantly contribute relevant data to, or even refuse to participate in FL. Therefore, in the application of FL, an important but also challenging issue is to motivate as many participants as possible to provide high-quality data to FL. In this paper, we propose an incentive mechanism for FL based on the continuous zero-determinant(CZD) strategies from the perspective of game theory. We first model the interaction between the server and the devices during the FL process as a continuous iterative game. We then apply the CZD strategies for two players and then multiple players to optimize the social welfare of FL, for which we prove that the server can keep social welfare at a high and stable level. Subsequently, we design an incentive mechanism based on the CZD strategies to attract devices to contribute all of their high-accuracy data to FL.Finally, we perform simulations to demonstrate that our proposed CZD-based incentive mechanism can indeed generate high and stable social welfare in FL.展开更多
Landslide susceptibility assessment is an essential tool for disaster prevention and management. In areas with multiple fault zones, the impact of fault zone on slope stability cannot be disregarded. This study perfor...Landslide susceptibility assessment is an essential tool for disaster prevention and management. In areas with multiple fault zones, the impact of fault zone on slope stability cannot be disregarded. This study performed qualitative analysis of fault zones and proposed a zoning method to assess the landslide susceptibility in Chengkou County, Chongqing Municipality, China. The region within a distance of 1 km from the faults was designated as sub-zone A, while the remaining area was labeled as sub-zone B. To accomplish the assessment, a dataset comprising 388 historical landslides and 388 non-landslide points was used to train the random forest model. 10-fold cross-validation was utilized to select the training and testing datasets for the model. The results of the models were analyzed and discussed, with a focus on model performance and prediction uncertainty. By implementing the proposed division strategy based on fault zone, the accuracy, precision, recall, F-score, and AUC of both two sub-zones surpassed those of the whole region. In comparison to the results obtained for the whole region, sub-zone B exhibited an increase in AUC by 6.15%, while sub-zone A demonstrated a corresponding increase of 1.66%. Moreover, the results of 100 random realizations indicated that the division strategy has little effect on the prediction uncertainty. This study introduces a novel approach to enhance the prediction accuracy of the landslide susceptibility mapping model in areas with multiple fault zones.展开更多
Pipeline isolation plugging robot (PIPR) is an important tool in pipeline maintenance operation. During the plugging process, the violent vibration will occur by the flow field, which can cause serious damage to the p...Pipeline isolation plugging robot (PIPR) is an important tool in pipeline maintenance operation. During the plugging process, the violent vibration will occur by the flow field, which can cause serious damage to the pipeline and PIPR. In this paper, we propose a dynamic regulating strategy to reduce the plugging-induced vibration by regulating the spoiler angle and plugging velocity. Firstly, the dynamic plugging simulation and experiment are performed to study the flow field changes during dynamic plugging. And the pressure difference is proposed to evaluate the degree of flow field vibration. Secondly, the mathematical models of pressure difference with plugging states and spoiler angles are established based on the extreme learning machine (ELM) optimized by improved sparrow search algorithm (ISSA). Finally, a modified Q-learning algorithm based on simulated annealing is applied to determine the optimal strategy for the spoiler angle and plugging velocity in real time. The results show that the proposed method can reduce the plugging-induced vibration by 19.9% and 32.7% on average, compared with single-regulating methods. This study can effectively ensure the stability of the plugging process.展开更多
Quantum error correction is a crucial technology for realizing quantum computers.These computers achieve faulttolerant quantum computing by detecting and correcting errors using decoding algorithms.Quantum error corre...Quantum error correction is a crucial technology for realizing quantum computers.These computers achieve faulttolerant quantum computing by detecting and correcting errors using decoding algorithms.Quantum error correction using neural network-based machine learning methods is a promising approach that is adapted to physical systems without the need to build noise models.In this paper,we use a distributed decoding strategy,which effectively alleviates the problem of exponential growth of the training set required for neural networks as the code distance of quantum error-correcting codes increases.Our decoding algorithm is based on renormalization group decoding and recurrent neural network decoder.The recurrent neural network is trained through the ResNet architecture to improve its decoding accuracy.Then we test the decoding performance of our distributed strategy decoder,recurrent neural network decoder,and the classic minimum weight perfect matching(MWPM)decoder for rotated surface codes with different code distances under the circuit noise model,the thresholds of these three decoders are about 0.0052,0.0051,and 0.0049,respectively.Our results demonstrate that the distributed strategy decoder outperforms the other two decoders,achieving approximately a 5%improvement in decoding efficiency compared to the MWPM decoder and approximately a 2%improvement compared to the recurrent neural network decoder.展开更多
With the development of space technology,it is possible to build a space station in Earth-Moon space as a transit for Earth-Moon round-trip and entering in the deep space.Rendezvous and docking is one of the key techn...With the development of space technology,it is possible to build a space station in Earth-Moon space as a transit for Earth-Moon round-trip and entering in the deep space.Rendezvous and docking is one of the key technologies for building an Earth-Moon space station.A guidance strategy for rendezvous and docking from the Earth orbit to the space station in the Earth-Moon NRHO orbit is proposed in this paper,which is suitable for engineering applications.Firstly,the rendezvous and docking process is divided into three sections,i.e.,the large-range orbit transfer section,far-range guidance section,and close-range approaching section.The suitable terminal of large-range orbit transfer is selected according to the eigenvalue of NRHO orbit state transition matrix.The two-impulse guidance method based on the relative motion equation in the three-body problem is adopted for the far-range guidance section.The impulse time and amplitude are solved with the optimization algorithm.The linear constant three-body relative motion equation is proposed for the close-range approaching section,and the rendezvous and docking is completed by a two-stage linear approximation.Finally,a simulation analysis is carried out,and the simulation results show that the adopted dynamics equations and the designed guidance law are effective,and the three flight phases are naturally connected to accomplish the rendezvous and docking mission from the Earth orbit to the space station on the Earth-Moon NRHO.展开更多
The high-speed movement of satellites makes it not feasible to directly apply the mature routing scheme on the ground to the satellite network.DT-DVTR in the snapshot-based connectionoriented routing strategy is one o...The high-speed movement of satellites makes it not feasible to directly apply the mature routing scheme on the ground to the satellite network.DT-DVTR in the snapshot-based connectionoriented routing strategy is one of the representative solutions,but it still has room for improvement in terms of routing stability.In this paper,we propose an improved scheme for connection-oriented routing strategy named the Minimal Topology Change Routing based on Collaborative Rules(MTCR-CR).The MTCR-CR uses continuous time static topology snapshots based on satellite status to search for intersatellite link(ISL)construction solutions that meet the minimum number of topology changes to avoid route oscillations.The simulation results in Beidou-3 show that compared with DT-DVTR,MTCR-CR reduces the number of routing changes by about 92%,the number of path changes caused by routing changes is about38%,and the rerouting time is reduced by approximately 47%.At the same time,in order to show our algorithm more comprehensively,the same experimental index test was also carried out on the Globalstar satellite constellation.展开更多
In semiconductor photocatalysts,the easy recombination of photogenerated carriers seriously affects the application of photocatalytic materials in water treatment.To solve the serious problem of electron−hole pair rec...In semiconductor photocatalysts,the easy recombination of photogenerated carriers seriously affects the application of photocatalytic materials in water treatment.To solve the serious problem of electron−hole pair recombination in perylene diimide(PDI)organic semiconductors,we loaded ferric hydroxyl oxide(FeOOH)on PDI materials,successfully prepared novel FeOOH@PDI photocatalytic materials,and constructed a photo-Fenton system.The system was able to achieve highly efficient degradation of BPA under visible light,with a degradation rate of 0.112 min^(−1)that was 20 times higher than the PDI system,and it also showed universal degradation performances for a variety of emerging organic pollutants and anti-interference ability.The mechanism research revealed that the FeOOH has the electron trapping property,which can capture the photogenerated electrons on the surface of PDI,effectively reducing the compounding rate of photogenerated carriers of PDI and accelerating the iron cycling and H2O2 activation on the surface of FeOOH at the same time.This work provides new insights and methods for solving the problem of easy recombination of carriers in semiconductor photocatalysts and degrading emerging organic pollutants.展开更多
It is well-known that elevated low-density lipoprotein cholesterol(LDL-C)is a causal risk factor for atheroscler-otic cardiovascular disease(ASCVD),statins are cornerstone drugs for the cause-based treatment of ASCVD,...It is well-known that elevated low-density lipoprotein cholesterol(LDL-C)is a causal risk factor for atheroscler-otic cardiovascular disease(ASCVD),statins are cornerstone drugs for the cause-based treatment of ASCVD,which has created a new era for ASCVD therapy.However,statin intolerance is not clinically uncommon,which there are several issues with confu-sion and misunderstandings.Hence,a file named Chinese Expert Consensus on the Diagnosis and Management Strategy of Pa-tients With Statin Intolerance,like a navigator,has recently been published written by a team of experts from the Cardiovascular Metabolic Medicine Professional Committee,Expert Committee of the National Center for Cardiovascular Diseases aiming to en-hance the standardized clinical application of statins and improve the prevention and clinical outcome.In this article,author briefly summarized the key points of above consensus in order to helping to comprehending the content of the consensus sugges-tions.展开更多
BACKGROUND The incidence of rectal cancer is increasing worldwide,and surgery remains the primary treatment modality.With the advent of total mesorectal excision(TME)technique,the probability of tumor recurrence post-...BACKGROUND The incidence of rectal cancer is increasing worldwide,and surgery remains the primary treatment modality.With the advent of total mesorectal excision(TME)technique,the probability of tumor recurrence post-surgery has significantly decreased.Surgeons'focus has gradually shifted towards minimizing the impact of surgery on urinary and sexual functions.Among these concerns,the optimal dissection of the rectal lateral ligaments and preservation of the pelvic floor neuro-vascular bundle have become critical.To explore the optimal surgical technique for TME and establish a standardized surgical protocol to minimize the impact on urinary and sexual functions,we propose the eight-zone dissection strategy for pelvic floor anatomy.AIM To compare the differences in surgical specimen integrity and postoperative quality of life satisfaction between the traditional pelvic floor dissection strategy and the innovative eight-zone dissection strategy.METHODS We analyzed the perioperative data of patients who underwent laparoscopic radical resection of rectal cancer at Qilu Hospital of Shandong University between January 1,2021 and December 1,2023.This study included a total of 218 patients undergoing laparoscopic radical surgery for rectal cancer,among whom 109 patients underwent traditional pelvic floor dissection strategy,and 109 patients received the eight-zone dissection strategy.RESULTS There were no significant differences in general characteristics between the two groups.Patients in the eight-zone dissection group had higher postoperative specimen integrity(88.1%vs 78.0%,P=0.047).At the 3-month followup,patients in the eight-zone surgery group had better scores in urinary issues(6.8±3.3 vs 5.3±2.5,P=0.045)and male sexual desire(2.2±0.6 vs 2.5±0.5,P=0.047)compared to the traditional surgery strategy group.CONCLUSION This study demonstrates that the eight-zone dissection strategy for laparoscopic lateral ligament dissection of rectal cancer is safe and effective.Compared with the traditional pelvic floor dissection strategy,this approach can reduce the risk of nerve injury and minimize the impact on urinary and sexual functions.Therefore,we recommend the clinical application of this strategy to better serve patients with rectal cancer.展开更多
Buried interfacial voids have always been a notorious phenomenon observed in the fabrication of lead perovskite films. The existence of interfacial voids at the buried interface will capture the carrier, suppress carr...Buried interfacial voids have always been a notorious phenomenon observed in the fabrication of lead perovskite films. The existence of interfacial voids at the buried interface will capture the carrier, suppress carrier transport efficiencies, and affect the stability of photovoltaic devices. However, the impact of these buried interfacial voids on tin perovskites, a promising avenue for advancing lead-free photovoltaics, has been largely overlooked. Here, we utilize an innovative weakly polar solvent pretreatment strategy(WPSPS) to mitigate buried interfacial voids of tin perovskites. Our investigation reveals the presence of numerous voids in tin perovskites during annealing, attributed to trapped dimethyl sulfoxide(DMSO) used in film formation. The WPSPS method facilitates accelerated DMSO evaporation, effectively reducing residual DMSO. Interestingly, the WPSPS shifts the energy level of PEDOT:PSS downward, making it more aligned with the perovskite. This alignment enhances the efficiency of charge carrier transport. As the result, tin perovskite film quality is significantly improved,achieving a maximum power conversion efficiency approaching 12% with only an 8.3% efficiency loss after 1700 h of stability tests, which compares well with the state-of-the-art stability of tin-based perovskite solar cells.展开更多
文摘Introduced by the late Prime Minister Shinzo Abe and inherited and developed by Fumio Kishida,Japan's“Indo–Pacific”strategy has gradually taken shape.This strategy can be deemed a broad vision,covering a wide range of topics and an extensive network of partners,with a strong trend of pan-securitization.It is a comprehensive inter national st rateg y based on Japan's alliance policy and China containment strategy,following a global,security-oriented approach.Driven by considerations such as maintaining its economic status,realizing its long-cherished dream of becoming a political powerhouse,and containing China,Japan has stepped up its“Indo–Pacific”strategy,which may influence global development,undermine regional maritime security,and impede China's reunification process.Meanwhile,Japan's“Indo–Pacific”strategy faces the triple challenge of a strategic overdraft,the unstable economic foundations,and the weak external support.These constraints may not suffice to reverse the direction of Japan's“Indo–Pacific”strategy in the short term but will limit its effectiveness.
文摘Self-serving,rational agents sometimes cooperate to their mutual benefit.The two-player iterated prisoner′s dilemma game is a model for including the emergence of cooperation.It is generally believed that there is no simple ultimatum strategy which a player can control the return of the other participants.The zero-determinant strategy in the iterated prisoner′s dilemma dramatically expands our understanding of the classic game by uncovering strategies that provide a unilateral advantage to sentient players pitted against unwitting opponents.However,strategies in the prisoner′s dilemma game are only two strategies.Are there these results for general multi-strategy games?To address this question,the paper develops a theory for zero-determinant strategies for multi-strategy games,with any number of strategies.The analytical results exhibit a similar yet different scenario to the case of two-strategy games.The results are also applied to the Snowdrift game,the Hawk-Dove game and the Chicken game.
基金supported in part by the Strategic Priority Research Program of Chinese Academy of Sciences(XDA27030100)National Natural Science Foundation of China(72293575, 11832001)。
文摘The pursuit-evasion game models the strategic interaction among players, attracting attention in many realistic scenarios, such as missile guidance, unmanned aerial vehicles, and target defense. Existing studies mainly concentrate on the cooperative pursuit of multiple players in two-dimensional pursuit-evasion games. However, these approaches can hardly be applied to practical situations where players usually move in three-dimensional space with a three-degree-of-freedom control. In this paper,we make the first attempt to investigate the equilibrium strategy of the realistic pursuit-evasion game, in which the pursuer follows a three-degree-of-freedom control, and the evader moves freely. First, we describe the pursuer's three-degree-of-freedom control and the evader's relative coordinate. We then rigorously derive the equilibrium strategy by solving the retrogressive path equation according to the Hamilton-Jacobi-Bellman-Isaacs(HJBI) method, which divides the pursuit-evasion process into the navigation and acceleration phases. Besides, we analyze the maximum allowable speed for the pursuer to capture the evader successfully and provide the strategy with which the evader can escape when the pursuer's speed exceeds the threshold. We further conduct comparison tests with various unilateral deviations to verify that the proposed strategy forms a Nash equilibrium.
基金supported by the Key R&D Program of Anhui Province in 2020 under Grant No.202004a05020078China Environment for Network Innovations(CENI)under Grant No.2016-000052-73-01-000515.
文摘As users’access to the network has evolved into the acquisition of mass contents instead of IP addresses,the IP network architecture based on end-to-end communication cannot meet users’needs.Therefore,the Information-Centric Networking(ICN)came into being.From a technical point of view,ICN is a promising future network architecture.Researching and customizing a reasonable pricing mechanism plays a positive role in promoting the deployment of ICN.The current research on ICN pricing mechanism is focused on paid content.Therefore,we study an ICN pricing model for free content,which uses game theory based on Nash equilibrium to analysis.In this work,advertisers are considered,and an advertiser model is established to describe the economic interaction between advertisers and ICN entities.This solution can formulate the best pricing strategy for all ICN entities and maximize the benefits of each entity.Our extensive analysis and numerical results show that the proposed pricing framework is significantly better than existing solutions when it comes to free content.
基金financially supported by the Natural Science Foundation of Jiangsu Province,China (BK20210887)the Jiangsu Provincial Double Innovation Program,China (JSSCB20210984)+1 种基金the Natural Science Fund for Colleges and Universities of Jiangsu Province,China (21KJB450003)the Jiangsu University of Science and Technology Doctoral Research Start-up Fund,China (120200012)。
文摘Nickel(Ni)-rich cathode materials have become promising candidates for the next-generation electrical vehicles due to their high specific capacity.However,the poor thermodynamic stability(including cyclic performance and safety performance or thermal stability)will restrain their wide commercial application.Herein,a single-crystal Ni-rich Li Ni_(0.83)Co_(0.12)Mn_(0.05)O_(2) cathode material is synthesized and modified by a dual-substitution strategy in which the high-valence doping element improves the structural stability by forming strong metal–oxygen binding forces,while the low-valence doping element eliminates high Li^(+)/Ni^(2+)mixing.As a result,this synergistic dual substitution can effectively suppress H2-H3 phase transition and generation of microcracks,thereby ultimately improving the thermodynamic stability of Ni-rich cathode material.Notably,the dual-doped Ni-rich cathode delivers an extremely high capacity retention of 81%after 250 cycles(vs.Li/Li+)in coin-type half cells and 87%after 1000 cycles(vs.graphite/Li^(+))in pouch-type full cells at a high temperature of 55℃.More impressively,the dual-doped sample exhibits excellent thermal stability,which demonstrates a higher thermal runaway temperature and a lower calorific value.The synergetic effects of this dual-substitution strategy pave a new pathway for addressing the critical challenges of Ni-rich cathode at high temperatures,which will significantly advance the high-energy-density and high-safety cathodes to the subsequent commercialization.
基金Supported by the Laoshan Laboratory (No.LSKJ202204005)the Mount Tai Scholar Climbing Plan to Song SUNthe Open Fund of CAS Key Laboratory of Marine Ecology and Environmental Sciences,Institute of Oceanology,Chinese Academy of Sciences (No.KLMEES201801)
文摘Ulva prolifera is the causative species of the annually occurring large-scale green tides in China since 2007.Its specific biological features on reproductivity strategies,as well as intra-species genetic diversity,are still largely unknown,especially at the genome level,despite their importance in understanding the formation and outbreak of massive green tides.In the present study,the restriction site-associated DNA genotyping approach(2b-RAD)was adopted to identify the genome-wide single-nucleotide polymorphisms(SNPs)of 54 individual thalli including samples collected from Subei Shoal in 2019 and Qingdao coast from 2019 to 2021.SNPs genotype results revealed that most of the thalli in 2019 and 2020 were haploid gametophytes,while only half of the thalli were gametophytes in 2021,indicating flexibility in the reproductive strategies for the formation of the green tides among different years and the dominance of asexual and vegetative reproductive mode for the floating period.Besides,population analysis was conducted,and it revealed a very low genetic diversity among samples from Subei Shoal and the Qingdao coast in the same year and a higher divergence among samples in different years.The results showed the efficiency of 2b-RAD in the exploration of SNPs in U.prolifera and provided the first genome-wide scale evidence for the origin of the large-scale green tides on the Qingdao coast.This study improved our understanding of the reproductive strategy and genetic diversity of the green tide causative species and will help further reveal the biological causes of the green tide in China.
基金supported by the National Natural Science Foundation of China(22109100,22075203)Guangdong Basic and Applied Basic Research Foundation(2022A1515011677)+1 种基金Shenzhen Science and Technology Project Program(JCYJ2021032409420401)Natural Science Foundation of SZU(000002111605).
文摘The high-temperature pyrolysis process for preparing M–N–C single-atom catalyst usually results in high heterogeneity in product structure concurrently contains multiscale metal phases from single atoms(SAs),atomic clusters to nanoparticles.Therefore,understanding the interactions among these components,especially the synergistic effects between single atomic sites and cluster sites,is crucial for improving the oxygen reduction reaction(ORR)activity of M–N–C catalysts.Accordingly,herein,we constructed a model catalyst composed of both atomically dispersed FeN4 SA sites and adjacent Fe clusters through a site occupation strategy.We found that the Fe clusters can optimize the adsorption strength of oxygen reduction intermediates on FeN4 SA sites by introducing electron-withdrawing–OH ligands and decreasing the d-band center of the Fe center.The as-developed catalyst exhibits encouraging ORR activity with halfwave potentials(E1/2)of 0.831 and 0.905 V in acidic and alkaline media,respectively.Moreover,the catalyst also represents excellent durability exceeding that of Fe–N–C SA catalyst.The practical application of Fe(Cd)–CNx catalyst is further validated by its superior activity and stability in a metalair battery device.Our work exhibits the great potential of synergistic effects between multiphase metal species for improvements of singleatom site catalysts.
基金supported in part by the National Natural Science Foundation of China (61933007,62273087,U22A2044,61973102,62073180)the Shanghai Pujiang Program of China (22PJ1400400)+1 种基金the Royal Society of the UKthe Alexander von Humboldt Foundation of Germany。
文摘This paper concerns ultimately bounded output-feedback control problems for networked systems with unknown nonlinear dynamics. Sensor-to-observer signal transmission is facilitated over networks that has communication constraints.These transmissions are carried out over an unreliable communication channel. In order to enhance the utilization rate of measurement data, a buffer-aided strategy is novelly employed to store historical measurements when communication networks are inaccessible. Using the neural network technique, a novel observer-based controller is introduced to address effects of signal transmission behaviors and unknown nonlinear dynamics.Through the application of stochastic analysis and Lyapunov stability, a joint framework is constructed for analyzing resultant system performance under the introduced controller. Subsequently, existence conditions for the desired output-feedback controller are delineated. The required parameters for the observerbased controller are then determined by resolving some specific matrix inequalities. Finally, a simulation example is showcased to confirm method efficacy.
基金National Natural Science Foundation of China,Grant/Award Number:31770608Postgraduate Research&Practice Innovation Program of Jiangsu Province,Grant/Award Number:KYCX22_1081Jiangsu Specially‐appointed Professorship Program,Grant/Award Number:Sujiaoshi[2016]20。
文摘The emergence of Li–Mg hybrid batteries has been receiving attention,owing to their enhanced electrochemical kinetics and reduced overpotential.Nevertheless,the persistent challenge of uneven Mg electrodeposition remains a significant impediment to their practical integration.Herein,we developed an ingenious approach that centered around epitaxial electrocrystallization and meticulously controlled growth of magnesium crystals on a specialized MgMOF substrate.The chosen MgMOF substrate demonstrated a robust affinity for magnesium and showed minimal lattice misfit with Mg,establishing the crucial prerequisites for successful heteroepitaxial electrocrystallization.Moreover,the incorporation of periodic electric fields and successive nanochannels within the MgMOF structure created a spatially confined environment that considerably promoted uniform magnesium nucleation at the molecular scale.Taking inspiration from the“blockchain”concept prevalent in the realm of big data,we seamlessly integrated a conductive polypyrrole framework,acting as a connecting“chain,”to interlink the“blocks”comprising the MgMOF cavities.This innovative design significantly amplified charge‐transfer efficiency,thereby increasing overall electrochemical kinetics.The resulting architecture(MgMOF@PPy@CC)served as an exceptional host for heteroepitaxial Mg electrodeposition,showcasing remarkable electrostripping/plating kinetics and excellent cycling performance.Surprisingly,a symmetrical cell incorporating the MgMOF@PPy@CC electrode demonstrated impressive stability even under ultrahigh current density conditions(10mAcm^(–2)),maintaining operation for an extended 1200 h,surpassing previously reported benchmarks.Significantly,on coupling the MgMOF@PPy@CC anode with a Mo_(6)S_(8) cathode,the assembled battery showed an extended lifespan of 10,000 cycles at 70 C,with an outstanding capacity retention of 96.23%.This study provides a fresh perspective on the rational design of epitaxial electrocrystallization driven by metal–organic framework(MOF)substrates,paving the way toward the advancement of cuttingedge batteries.
基金This work was supported by the Fundamental Research Funds for the Central Universities(DUT20LAB123 and DUT20LAB307)the Natural Science Foundation of Jiangsu Province(BK20191167).
文摘Improving the reversibility of anionic redox and inhibiting irreversible oxygen evolution are the main challenges in the application of high reversible capacity Li-rich Mn-based cathode materials.A facile synchronous lithiation strategy combining the advantages of yttrium doping and LiYO_(2) surface coating is proposed.Yttrium doping effectively suppresses the oxygen evolution during the delithiation process by increasing the energy barrier of oxygen evolution reaction through strong Y–O bond energy.LiYO_(2) nanocoating has the function of structural constraint and protection,that protecting the lattice oxygen exposed to the surface,thus avoiding irreversible oxidation.As an Li^(+) conductor,LiYO_(2) nano-coating can provide a fast Li^(+) transfer channel,which enables the sample to have excellent rate performance.The synergistic effect of Y doping and nano-LiYO_(2) coating integration suppresses the oxygen release from the surface,accelerates the diffusion of Li^(+)from electrolyte to electrode and decreases the interfacial side reactions,enabling the lithium ion batteries to obtain good electrochemical performance.The lithium-ion full cell employing the Y-1 sample(cathode)and commercial graphite(anode)exhibit an excellent specific energy density of 442.9 Wh kg^(-1) at a current density of 0.1C,with very stable safety performance,which can be used in a wide temperature range(60 to-15℃)stable operation.This result illustrates a new integration strategy for advanced cathode materials to achieve high specific energy density.
基金partially supported by the National Natural Science Foundation of China (62173308)the Natural Science Foundation of Zhejiang Province of China (LR20F030001)the Jinhua Science and Technology Project (2022-1-042)。
文摘As a representative emerging machine learning technique, federated learning(FL) has gained considerable popularity for its special feature of “making data available but not visible”. However, potential problems remain, including privacy breaches, imbalances in payment, and inequitable distribution.These shortcomings let devices reluctantly contribute relevant data to, or even refuse to participate in FL. Therefore, in the application of FL, an important but also challenging issue is to motivate as many participants as possible to provide high-quality data to FL. In this paper, we propose an incentive mechanism for FL based on the continuous zero-determinant(CZD) strategies from the perspective of game theory. We first model the interaction between the server and the devices during the FL process as a continuous iterative game. We then apply the CZD strategies for two players and then multiple players to optimize the social welfare of FL, for which we prove that the server can keep social welfare at a high and stable level. Subsequently, we design an incentive mechanism based on the CZD strategies to attract devices to contribute all of their high-accuracy data to FL.Finally, we perform simulations to demonstrate that our proposed CZD-based incentive mechanism can indeed generate high and stable social welfare in FL.
基金Postdoctoral Research Foundation of China (2021M700608)Natural Science Foundation Project of Chongqing, Chongqing Science and Technology Commission (cstc2021jcyj-bsh0047)+1 种基金Scientific Project Supported by the Bureau of Planning and Natural Resources, Chongqing (2301DH09002)Sichuan Transportation Science and Technology Project (2018ZL-01)。
文摘Landslide susceptibility assessment is an essential tool for disaster prevention and management. In areas with multiple fault zones, the impact of fault zone on slope stability cannot be disregarded. This study performed qualitative analysis of fault zones and proposed a zoning method to assess the landslide susceptibility in Chengkou County, Chongqing Municipality, China. The region within a distance of 1 km from the faults was designated as sub-zone A, while the remaining area was labeled as sub-zone B. To accomplish the assessment, a dataset comprising 388 historical landslides and 388 non-landslide points was used to train the random forest model. 10-fold cross-validation was utilized to select the training and testing datasets for the model. The results of the models were analyzed and discussed, with a focus on model performance and prediction uncertainty. By implementing the proposed division strategy based on fault zone, the accuracy, precision, recall, F-score, and AUC of both two sub-zones surpassed those of the whole region. In comparison to the results obtained for the whole region, sub-zone B exhibited an increase in AUC by 6.15%, while sub-zone A demonstrated a corresponding increase of 1.66%. Moreover, the results of 100 random realizations indicated that the division strategy has little effect on the prediction uncertainty. This study introduces a novel approach to enhance the prediction accuracy of the landslide susceptibility mapping model in areas with multiple fault zones.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.51575528)the Science Foundation of China University of Petroleum,Beijing(No.2462022QEDX011).
文摘Pipeline isolation plugging robot (PIPR) is an important tool in pipeline maintenance operation. During the plugging process, the violent vibration will occur by the flow field, which can cause serious damage to the pipeline and PIPR. In this paper, we propose a dynamic regulating strategy to reduce the plugging-induced vibration by regulating the spoiler angle and plugging velocity. Firstly, the dynamic plugging simulation and experiment are performed to study the flow field changes during dynamic plugging. And the pressure difference is proposed to evaluate the degree of flow field vibration. Secondly, the mathematical models of pressure difference with plugging states and spoiler angles are established based on the extreme learning machine (ELM) optimized by improved sparrow search algorithm (ISSA). Finally, a modified Q-learning algorithm based on simulated annealing is applied to determine the optimal strategy for the spoiler angle and plugging velocity in real time. The results show that the proposed method can reduce the plugging-induced vibration by 19.9% and 32.7% on average, compared with single-regulating methods. This study can effectively ensure the stability of the plugging process.
基金Project supported by Natural Science Foundation of Shandong Province,China (Grant Nos.ZR2021MF049,ZR2022LLZ012,and ZR2021LLZ001)。
文摘Quantum error correction is a crucial technology for realizing quantum computers.These computers achieve faulttolerant quantum computing by detecting and correcting errors using decoding algorithms.Quantum error correction using neural network-based machine learning methods is a promising approach that is adapted to physical systems without the need to build noise models.In this paper,we use a distributed decoding strategy,which effectively alleviates the problem of exponential growth of the training set required for neural networks as the code distance of quantum error-correcting codes increases.Our decoding algorithm is based on renormalization group decoding and recurrent neural network decoder.The recurrent neural network is trained through the ResNet architecture to improve its decoding accuracy.Then we test the decoding performance of our distributed strategy decoder,recurrent neural network decoder,and the classic minimum weight perfect matching(MWPM)decoder for rotated surface codes with different code distances under the circuit noise model,the thresholds of these three decoders are about 0.0052,0.0051,and 0.0049,respectively.Our results demonstrate that the distributed strategy decoder outperforms the other two decoders,achieving approximately a 5%improvement in decoding efficiency compared to the MWPM decoder and approximately a 2%improvement compared to the recurrent neural network decoder.
基金National Natural Science Foundation of China(U20B2054)。
文摘With the development of space technology,it is possible to build a space station in Earth-Moon space as a transit for Earth-Moon round-trip and entering in the deep space.Rendezvous and docking is one of the key technologies for building an Earth-Moon space station.A guidance strategy for rendezvous and docking from the Earth orbit to the space station in the Earth-Moon NRHO orbit is proposed in this paper,which is suitable for engineering applications.Firstly,the rendezvous and docking process is divided into three sections,i.e.,the large-range orbit transfer section,far-range guidance section,and close-range approaching section.The suitable terminal of large-range orbit transfer is selected according to the eigenvalue of NRHO orbit state transition matrix.The two-impulse guidance method based on the relative motion equation in the three-body problem is adopted for the far-range guidance section.The impulse time and amplitude are solved with the optimization algorithm.The linear constant three-body relative motion equation is proposed for the close-range approaching section,and the rendezvous and docking is completed by a two-stage linear approximation.Finally,a simulation analysis is carried out,and the simulation results show that the adopted dynamics equations and the designed guidance law are effective,and the three flight phases are naturally connected to accomplish the rendezvous and docking mission from the Earth orbit to the space station on the Earth-Moon NRHO.
基金supported by the National Key Research and Development Program of China(No.2020YFB1806000)。
文摘The high-speed movement of satellites makes it not feasible to directly apply the mature routing scheme on the ground to the satellite network.DT-DVTR in the snapshot-based connectionoriented routing strategy is one of the representative solutions,but it still has room for improvement in terms of routing stability.In this paper,we propose an improved scheme for connection-oriented routing strategy named the Minimal Topology Change Routing based on Collaborative Rules(MTCR-CR).The MTCR-CR uses continuous time static topology snapshots based on satellite status to search for intersatellite link(ISL)construction solutions that meet the minimum number of topology changes to avoid route oscillations.The simulation results in Beidou-3 show that compared with DT-DVTR,MTCR-CR reduces the number of routing changes by about 92%,the number of path changes caused by routing changes is about38%,and the rerouting time is reduced by approximately 47%.At the same time,in order to show our algorithm more comprehensively,the same experimental index test was also carried out on the Globalstar satellite constellation.
基金supported by the National Natural Science Foundation of China(No.22306178 and 22176155)Outstanding Youth Talents of Sichuan Science and Technology Program(No.22JCQN0061)+1 种基金National Natural Science Foundation of China(No.22306012)Guangdong Basic and Applied Basic Research Foundation(No.2022A1515110578).
文摘In semiconductor photocatalysts,the easy recombination of photogenerated carriers seriously affects the application of photocatalytic materials in water treatment.To solve the serious problem of electron−hole pair recombination in perylene diimide(PDI)organic semiconductors,we loaded ferric hydroxyl oxide(FeOOH)on PDI materials,successfully prepared novel FeOOH@PDI photocatalytic materials,and constructed a photo-Fenton system.The system was able to achieve highly efficient degradation of BPA under visible light,with a degradation rate of 0.112 min^(−1)that was 20 times higher than the PDI system,and it also showed universal degradation performances for a variety of emerging organic pollutants and anti-interference ability.The mechanism research revealed that the FeOOH has the electron trapping property,which can capture the photogenerated electrons on the surface of PDI,effectively reducing the compounding rate of photogenerated carriers of PDI and accelerating the iron cycling and H2O2 activation on the surface of FeOOH at the same time.This work provides new insights and methods for solving the problem of easy recombination of carriers in semiconductor photocatalysts and degrading emerging organic pollutants.
基金supported by CAMS Innovation Fund for Medical Sciences(CIFMS,2021-I2M-C&TB-030).
文摘It is well-known that elevated low-density lipoprotein cholesterol(LDL-C)is a causal risk factor for atheroscler-otic cardiovascular disease(ASCVD),statins are cornerstone drugs for the cause-based treatment of ASCVD,which has created a new era for ASCVD therapy.However,statin intolerance is not clinically uncommon,which there are several issues with confu-sion and misunderstandings.Hence,a file named Chinese Expert Consensus on the Diagnosis and Management Strategy of Pa-tients With Statin Intolerance,like a navigator,has recently been published written by a team of experts from the Cardiovascular Metabolic Medicine Professional Committee,Expert Committee of the National Center for Cardiovascular Diseases aiming to en-hance the standardized clinical application of statins and improve the prevention and clinical outcome.In this article,author briefly summarized the key points of above consensus in order to helping to comprehending the content of the consensus sugges-tions.
文摘BACKGROUND The incidence of rectal cancer is increasing worldwide,and surgery remains the primary treatment modality.With the advent of total mesorectal excision(TME)technique,the probability of tumor recurrence post-surgery has significantly decreased.Surgeons'focus has gradually shifted towards minimizing the impact of surgery on urinary and sexual functions.Among these concerns,the optimal dissection of the rectal lateral ligaments and preservation of the pelvic floor neuro-vascular bundle have become critical.To explore the optimal surgical technique for TME and establish a standardized surgical protocol to minimize the impact on urinary and sexual functions,we propose the eight-zone dissection strategy for pelvic floor anatomy.AIM To compare the differences in surgical specimen integrity and postoperative quality of life satisfaction between the traditional pelvic floor dissection strategy and the innovative eight-zone dissection strategy.METHODS We analyzed the perioperative data of patients who underwent laparoscopic radical resection of rectal cancer at Qilu Hospital of Shandong University between January 1,2021 and December 1,2023.This study included a total of 218 patients undergoing laparoscopic radical surgery for rectal cancer,among whom 109 patients underwent traditional pelvic floor dissection strategy,and 109 patients received the eight-zone dissection strategy.RESULTS There were no significant differences in general characteristics between the two groups.Patients in the eight-zone dissection group had higher postoperative specimen integrity(88.1%vs 78.0%,P=0.047).At the 3-month followup,patients in the eight-zone surgery group had better scores in urinary issues(6.8±3.3 vs 5.3±2.5,P=0.045)and male sexual desire(2.2±0.6 vs 2.5±0.5,P=0.047)compared to the traditional surgery strategy group.CONCLUSION This study demonstrates that the eight-zone dissection strategy for laparoscopic lateral ligament dissection of rectal cancer is safe and effective.Compared with the traditional pelvic floor dissection strategy,this approach can reduce the risk of nerve injury and minimize the impact on urinary and sexual functions.Therefore,we recommend the clinical application of this strategy to better serve patients with rectal cancer.
基金National Natural Science Foundation of China (62274094, 62175117)Natural Science Foundation of Jiangsu Higher Education Institutions (22KJB510011)+1 种基金Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University (KJS2260)Huali Talents Program of Nanjing University of Posts and Telecommunications。
文摘Buried interfacial voids have always been a notorious phenomenon observed in the fabrication of lead perovskite films. The existence of interfacial voids at the buried interface will capture the carrier, suppress carrier transport efficiencies, and affect the stability of photovoltaic devices. However, the impact of these buried interfacial voids on tin perovskites, a promising avenue for advancing lead-free photovoltaics, has been largely overlooked. Here, we utilize an innovative weakly polar solvent pretreatment strategy(WPSPS) to mitigate buried interfacial voids of tin perovskites. Our investigation reveals the presence of numerous voids in tin perovskites during annealing, attributed to trapped dimethyl sulfoxide(DMSO) used in film formation. The WPSPS method facilitates accelerated DMSO evaporation, effectively reducing residual DMSO. Interestingly, the WPSPS shifts the energy level of PEDOT:PSS downward, making it more aligned with the perovskite. This alignment enhances the efficiency of charge carrier transport. As the result, tin perovskite film quality is significantly improved,achieving a maximum power conversion efficiency approaching 12% with only an 8.3% efficiency loss after 1700 h of stability tests, which compares well with the state-of-the-art stability of tin-based perovskite solar cells.