The conventional zenith tropospheric delay(ZTD)model(known as the Saastamoinen model)does not consider seasonal variations affecting the delay,giving it low accuracy and stability.This may be improved with adjustments...The conventional zenith tropospheric delay(ZTD)model(known as the Saastamoinen model)does not consider seasonal variations affecting the delay,giving it low accuracy and stability.This may be improved with adjustments to account for annual and semi-annual variations.This method uses ZTD data provided by the Global Geodetic Observing System to analyze seasonal variations in the bias of the Saastamoinen model in Asia,and then constructs a model with seasonal variation corrections,denoted as SSA.To overcome the dependence of the model on in-situ meteorological parameters,the SSA+GPT3 model is formed by combining the SSA and GPT3(global pressure-temperature)models.The results show that the introduction of annual and semi-annual variations can substantially improve the Saastamoinen model,yielding small and time-stable variations in bias and root mean square(RMS).In summer and autumn,the bias and RMS are noticeably smaller than those from the Saastamoinen model.In addition,the SSA model performs better in low-latitude and low-altitude areas,and bias and RMS decease with the increase of latitude or altitude.The prediction accuracy of the SSA model is also evaluated for external consistency.The results show that the accuracy of the SSA model(bias:-0.38 cm,RMS:4.43 cm)is better than that of the Saastamoinen model(bias:1.45 cm,RMS:5.16 cm).The proposed method has strong applicability and can therefore be used for predictive ZTD correction across Asia.展开更多
基金This work was supported by the Basic Science Research Program of Shaanxi Province(2023-JC-YB-057 and 2022JM-031).
文摘The conventional zenith tropospheric delay(ZTD)model(known as the Saastamoinen model)does not consider seasonal variations affecting the delay,giving it low accuracy and stability.This may be improved with adjustments to account for annual and semi-annual variations.This method uses ZTD data provided by the Global Geodetic Observing System to analyze seasonal variations in the bias of the Saastamoinen model in Asia,and then constructs a model with seasonal variation corrections,denoted as SSA.To overcome the dependence of the model on in-situ meteorological parameters,the SSA+GPT3 model is formed by combining the SSA and GPT3(global pressure-temperature)models.The results show that the introduction of annual and semi-annual variations can substantially improve the Saastamoinen model,yielding small and time-stable variations in bias and root mean square(RMS).In summer and autumn,the bias and RMS are noticeably smaller than those from the Saastamoinen model.In addition,the SSA model performs better in low-latitude and low-altitude areas,and bias and RMS decease with the increase of latitude or altitude.The prediction accuracy of the SSA model is also evaluated for external consistency.The results show that the accuracy of the SSA model(bias:-0.38 cm,RMS:4.43 cm)is better than that of the Saastamoinen model(bias:1.45 cm,RMS:5.16 cm).The proposed method has strong applicability and can therefore be used for predictive ZTD correction across Asia.
文摘为提高对流层天顶延迟(Zenith tropospheric delay,ZTD)的估计性能,提出了基于数据融合的ZTD估计方法。估计干延迟采用Saastamoinen模型,估计湿延迟采用Askne模型,地表气象测量设备提供给两模型所需的气压、温度以及水汽压,Askne模型所需的加权温度、温度变化率和湿度变化率由全球气压和温度2w(Global pressure and temperature 2w,GPT2w)模型提供。当气象测量设备不可用时,上述所有气象参数均来自于GPT2w模型。利用国际GPS服务(International GPS service, IGS)提供的数据进行验证,结果表明:当地表测量设备存在时,所提方法较Saastamoinen模型提高了8mm;当全部气象参数来自GPT2w时,本方法较GPT2w+Saastamoinen模型提高了8.1mm;对于季节分明的测站,误差趋势同样具备季节性;对于海拔高和气候干燥的的测站,估计误差较小。