The tell tail is usually placed on the triangular sail to display the running state of the air flow on the sail surface.It is of great significance to make accurate judgement on the drift of the tell tail of the sailb...The tell tail is usually placed on the triangular sail to display the running state of the air flow on the sail surface.It is of great significance to make accurate judgement on the drift of the tell tail of the sailboat during sailing for the best sailing effect.Normally it is difficult for sailors to keep an eye for a long time on the tell sail for accurate judging its changes,affected by strong sunlight and visual fatigue.In this case,we adopt computer vision technology in hope of helping the sailors judge the changes of the tell tail in ease with ease.This paper proposes for the first time a method to classify sailboat tell tails based on deep learning and an expert guidance system,supported by a sailboat tell tail classification data set on the expert guidance system of interpreting the tell tails states in different sea wind conditions,including the feature extraction performance.Considering the expression capabilities that vary with the computational features in different visual tasks,the paper focuses on five tell tail computing features,which are recoded by an automatic encoder and classified by a SVM classifier.All experimental samples were randomly divided into five groups,and four groups were selected from each group as the training set to train the classifier.The remaining one group was used as the test set for testing.The highest resolution value of the ResNet network was 80.26%.To achieve better operational results on the basis of deep computing features obtained through the ResNet network in the experiments.The method can be used to assist the sailors in making better judgement about the tell tail changes during sailing.展开更多
Sail is the core part of autonomous sailboat and wing sail is a new type of sail. Wing sail generates not only propulsion but also lateral force and heeling moment. The latter two will affect the navigation status and...Sail is the core part of autonomous sailboat and wing sail is a new type of sail. Wing sail generates not only propulsion but also lateral force and heeling moment. The latter two will affect the navigation status and bring resistance. Double sail can effectively reduce the center of wind pressure and heeling moment. In order to study the effect of distance between two sails, airfoil and attack angle on the total lift coefficient of double sail propulsion system, pressure coefficient distribution and lift coefficient calculation model have been established based on vortex panel method. By using the basic finite solution, the fluid dynamic forces on the two-dimensional sails are computed.The results show that, the distance in the range of 0 to 1 time chord length, when using the same airfoil in the fore and aft sail, the total lift coefficient of the double sail increases with the increase of distance, finally reaches a stable value in the range of one to three times chord length. Lift coefficients of thicker airfoils are more sensitive to the change of distance. The thicker the airfoil, the longer distance is required of the total lift coefficient toward stable.When different airfoils are adopted in fore and aft sail, the total lift coefficient increases with the increase of the thickness of aft sail. The smaller the thickness difference is, the more sensitive to the distance change the lift coefficient is. The thinner the fore sail is, the lower the influence will be on the lift coefficient of aft sail.展开更多
To analyze the influence of the chord length ratio and angle of attack on lift coefficients and explore the interaction mechanism between the two,we established a calculation model of the pressure distribution coeffic...To analyze the influence of the chord length ratio and angle of attack on lift coefficients and explore the interaction mechanism between the two,we established a calculation model of the pressure distribution coefficient on the airfoil surface and lift coefficient of a dual-wing sail on the basis of the vortex panel method.Computational fluid dynamics was used in auxiliary calculation and analysis.Results revealed a reciprocal interference between the front-wing and rear-wing sails.The total lift coefficient of the dual-sail increased with an increase in the front sail chord length.The lift coefficient of the rear sail decreased with an increase in the front sail chord length or angle of attack.The front sail wake affected the pressure distribution on the upper and lower surfaces of the rear sail leading edge.展开更多
Oceanic autonomous surface vehicles(ASVs) are one kind of autonomous marine robots that have advantages of energy saving and is flexible to use. Nowadays, ASVs are playing an important role in marine science, maritime...Oceanic autonomous surface vehicles(ASVs) are one kind of autonomous marine robots that have advantages of energy saving and is flexible to use. Nowadays, ASVs are playing an important role in marine science, maritime industry, and national defense. It could improve the efficiency of oceanic data collection, ensure marine transportation safety, and protect national security. One of the core challenges for ASVs is how to plan a safe navigation autonomously under the complicated ocean environment. Based on the type of marine vehicles, ASVs could be divided into two categories: autonomous sailboats and autonomous vessels. In this article, we review the challenges and related solutions of ASVs' autonomous navigation, including modeling analysis, path planning and implementation. Finally, we make a summary of all of those in four tables and discuss about the future research directions.展开更多
In this paper,we presented the development of a navigation control system for a sailboat based on spiking neural networks(SNN).Our inspiration for this choice of network lies in their potential to achieve fast and low...In this paper,we presented the development of a navigation control system for a sailboat based on spiking neural networks(SNN).Our inspiration for this choice of network lies in their potential to achieve fast and low-energy computing on specialized hardware.To train our system,we use the modulated spike time-dependent plasticity reinforcement learning rule and a simulation environment based on the BindsNET library and USVSim simulator.Our objective was to develop a spiking neural network-based control systems that can learn policies allowing sailboats to navigate between two points by following a straight line or performing tacking and gybing strategies,depending on the sailing scenario conditions.We presented the mathematical definition of the problem,the operation scheme of the simulation environment,the spiking neural network controllers,and the control strategy used.As a result,we obtained 425 SNN-based controllers that completed the proposed navigation task,indicating that the simulation environment and the implemented control strategy work effectively.Finally,we compare the behavior of our best controller with other algorithms and present some possible strategies to improve its performance.展开更多
Suffering from actuator failure and complex sideslip angle,the motion control of a sailboat becomes challenging.In this paper,an improved double finite-time observer-based line-of-sight guidance and finite-time contro...Suffering from actuator failure and complex sideslip angle,the motion control of a sailboat becomes challenging.In this paper,an improved double finite-time observer-based line-of-sight guidance and finite-time control(IDFLOS-FC)scheme is presented for path following of sailboats.The salient features of the proposed IDFLOS-FC scheme are as follows:(1)Considering the problem of actuator failure,an actuator failure model is introduced into the dynamics model of a sailboat.(2)The time-varying sideslip angle of the sailboat is accurately observed by the double finite-time sideslip observers(DFSOs),which reduces the error in line-of-sight(LOS)guidance.(3)A radial basis function(RBF)neural network is used to fit the uncertainty of the model,and the upper bound of the sum of fault effects and external disturbances is estimated based on adaptive theory,so that the controller has accurate tracking and interference suppression.(4)According to the Lyapunov method,the system is finite-time stable.Finally,simulation was used to validate the effectiveness of the method.展开更多
基金supported by the Shandong Provin-cial Key Research Project of Undergraduate Teaching Reform(No.Z2022218)the Fundamental Research Funds for the Central University(No.202113028)+1 种基金the Graduate Education Promotion Program of Ocean University of China(No.HDJG20006)supported by the Sailing Laboratory of Ocean University of China.
文摘The tell tail is usually placed on the triangular sail to display the running state of the air flow on the sail surface.It is of great significance to make accurate judgement on the drift of the tell tail of the sailboat during sailing for the best sailing effect.Normally it is difficult for sailors to keep an eye for a long time on the tell sail for accurate judging its changes,affected by strong sunlight and visual fatigue.In this case,we adopt computer vision technology in hope of helping the sailors judge the changes of the tell tail in ease with ease.This paper proposes for the first time a method to classify sailboat tell tails based on deep learning and an expert guidance system,supported by a sailboat tell tail classification data set on the expert guidance system of interpreting the tell tails states in different sea wind conditions,including the feature extraction performance.Considering the expression capabilities that vary with the computational features in different visual tasks,the paper focuses on five tell tail computing features,which are recoded by an automatic encoder and classified by a SVM classifier.All experimental samples were randomly divided into five groups,and four groups were selected from each group as the training set to train the classifier.The remaining one group was used as the test set for testing.The highest resolution value of the ResNet network was 80.26%.To achieve better operational results on the basis of deep computing features obtained through the ResNet network in the experiments.The method can be used to assist the sailors in making better judgement about the tell tail changes during sailing.
基金financially supported by the JIANG Xinsong Innovation Fund(Grant No.Y8F7010701)
文摘Sail is the core part of autonomous sailboat and wing sail is a new type of sail. Wing sail generates not only propulsion but also lateral force and heeling moment. The latter two will affect the navigation status and bring resistance. Double sail can effectively reduce the center of wind pressure and heeling moment. In order to study the effect of distance between two sails, airfoil and attack angle on the total lift coefficient of double sail propulsion system, pressure coefficient distribution and lift coefficient calculation model have been established based on vortex panel method. By using the basic finite solution, the fluid dynamic forces on the two-dimensional sails are computed.The results show that, the distance in the range of 0 to 1 time chord length, when using the same airfoil in the fore and aft sail, the total lift coefficient of the double sail increases with the increase of distance, finally reaches a stable value in the range of one to three times chord length. Lift coefficients of thicker airfoils are more sensitive to the change of distance. The thicker the airfoil, the longer distance is required of the total lift coefficient toward stable.When different airfoils are adopted in fore and aft sail, the total lift coefficient increases with the increase of the thickness of aft sail. The smaller the thickness difference is, the more sensitive to the distance change the lift coefficient is. The thinner the fore sail is, the lower the influence will be on the lift coefficient of aft sail.
基金the Foundation of State Key Laboratory of Robotics(No.2020-Z14)the Jiang Xin-song Innovation Foundation(No.Y8F7010701)+1 种基金the National Natural Science Foundation of China(No.41906173)the China Postdoctoral Science Foundation(No.2019M662874)。
文摘To analyze the influence of the chord length ratio and angle of attack on lift coefficients and explore the interaction mechanism between the two,we established a calculation model of the pressure distribution coefficient on the airfoil surface and lift coefficient of a dual-wing sail on the basis of the vortex panel method.Computational fluid dynamics was used in auxiliary calculation and analysis.Results revealed a reciprocal interference between the front-wing and rear-wing sails.The total lift coefficient of the dual-sail increased with an increase in the front sail chord length.The lift coefficient of the rear sail decreased with an increase in the front sail chord length or angle of attack.The front sail wake affected the pressure distribution on the upper and lower surfaces of the rear sail leading edge.
基金partially supported by the National Key R&D Program (No.2016YFC1401900)the China Postdoctoral Science Foundation (No.2017M620293)+4 种基金the Fundamental Research Funds for the Central Universities (No.201713016)Qingdao National Labor for Marine Science and Technology Open Research Project (No.QNLM2016ORP0405)the Natural Science Foundation of Shandong (No.ZR2018BF006)partially supported by the National Natural Science Foundation of China (No.61572347)the U.S.Department of Transportation Center for Advanced Multimodal Mobility Solutions and Education (No.69A3351747133)。
文摘Oceanic autonomous surface vehicles(ASVs) are one kind of autonomous marine robots that have advantages of energy saving and is flexible to use. Nowadays, ASVs are playing an important role in marine science, maritime industry, and national defense. It could improve the efficiency of oceanic data collection, ensure marine transportation safety, and protect national security. One of the core challenges for ASVs is how to plan a safe navigation autonomously under the complicated ocean environment. Based on the type of marine vehicles, ASVs could be divided into two categories: autonomous sailboats and autonomous vessels. In this article, we review the challenges and related solutions of ASVs' autonomous navigation, including modeling analysis, path planning and implementation. Finally, we make a summary of all of those in four tables and discuss about the future research directions.
基金supported by the University of Antioquia with project PRG2017-16182by the Colombia Scientific Program within the framework of the call Ecosistema Científico(Contract No.FP44842-218-2018).
文摘In this paper,we presented the development of a navigation control system for a sailboat based on spiking neural networks(SNN).Our inspiration for this choice of network lies in their potential to achieve fast and low-energy computing on specialized hardware.To train our system,we use the modulated spike time-dependent plasticity reinforcement learning rule and a simulation environment based on the BindsNET library and USVSim simulator.Our objective was to develop a spiking neural network-based control systems that can learn policies allowing sailboats to navigate between two points by following a straight line or performing tacking and gybing strategies,depending on the sailing scenario conditions.We presented the mathematical definition of the problem,the operation scheme of the simulation environment,the spiking neural network controllers,and the control strategy used.As a result,we obtained 425 SNN-based controllers that completed the proposed navigation task,indicating that the simulation environment and the implemented control strategy work effectively.Finally,we compare the behavior of our best controller with other algorithms and present some possible strategies to improve its performance.
基金supported by the National Natural Science Foundation of China(Nos.52271306,52025111,and 51939003)the Central Guidance on Local Science and Technology Development Fund(No.2023JH6/100100010)the Fundamental Research Funds for the Central Universities(No.3132023501),China.
文摘Suffering from actuator failure and complex sideslip angle,the motion control of a sailboat becomes challenging.In this paper,an improved double finite-time observer-based line-of-sight guidance and finite-time control(IDFLOS-FC)scheme is presented for path following of sailboats.The salient features of the proposed IDFLOS-FC scheme are as follows:(1)Considering the problem of actuator failure,an actuator failure model is introduced into the dynamics model of a sailboat.(2)The time-varying sideslip angle of the sailboat is accurately observed by the double finite-time sideslip observers(DFSOs),which reduces the error in line-of-sight(LOS)guidance.(3)A radial basis function(RBF)neural network is used to fit the uncertainty of the model,and the upper bound of the sum of fault effects and external disturbances is estimated based on adaptive theory,so that the controller has accurate tracking and interference suppression.(4)According to the Lyapunov method,the system is finite-time stable.Finally,simulation was used to validate the effectiveness of the method.