In this paper, the nonnull moments and the distributions of the likelihood ratio criterion for testing the equality of diagonal blocks with blockwise independence under certain alternatives have derived.
Coutsourides (1980) derives an ad hoc nuisance parameter removal test for testing the equality of two multiple correlation coefficients of two independent p variate normal populations, under the assumption that a samp...Coutsourides (1980) derives an ad hoc nuisance parameter removal test for testing the equality of two multiple correlation coefficients of two independent p variate normal populations, under the assumption that a sample of size n is available from each population. He also extends his ad hoc nuisance parameter removal test to the testing of the equality of two multiple correlation matrices. This paper presents likelihood ratio tests for testing the equality of k multiple correlation coefficients, and also k partial correlation coefficients.展开更多
In conjunction with general integral control, and synthesizing Singular perturbation and Equal ratio gain techniques, this paper proposes a new control design technique, named Power ratio gain technique, and then by L...In conjunction with general integral control, and synthesizing Singular perturbation and Equal ratio gain techniques, this paper proposes a new control design technique, named Power ratio gain technique, and then by Lyapunov method, theorem to ensure regionally as well as semi-globally asymptotic stability is established in terms of some bounded information. The highlight point is that it not only inherits all the essences of Singular perturbation and Equal ratio gain techniques but also makes up for their shortcomings, and then the conservatism of control input can be improved by compromising the Power ratio coefficients. Theoretical analysis, design example and simulation results show that Power ratio gain technique is a simple, practical and powerful tool to deal with the uncertain nonlinear system.展开更多
In conjunction with linear general integral control, this paper proposes a fire-new control design technique, named Equal ratio gain technique, and then develops two kinds of control design methods, that is, Decomposi...In conjunction with linear general integral control, this paper proposes a fire-new control design technique, named Equal ratio gain technique, and then develops two kinds of control design methods, that is, Decomposition and Synthetic methods, for a class of uncertain nonlinear system. By Routh’s stability criterion, we demonstrate that a canonical system matrix can be designed to be always Hurwitz as any row controller gains, or controller and its integrator gains increase with the same ratio. By solving Lyapunov equation, we demonstrate that as any row controller gains, or controller and its integrator gains of a canonical system matrix tend to infinity with the same ratio, if it is always Hurwitz, and then the same row solutions of Lyapunov equation all tend to zero. By Equal ratio gain technique and Lyapunov method, theorems to ensure semi-globally asymptotic stability are established in terms of some bounded information. Moreover, the striking robustness of linear general integral control and PID control is clearly illustrated by Equal ratio gain technique. Theoretical analysis, design example and simulation results showed that Equal ratio gain technique is a powerful tool to solve the control design problem of uncertain nonlinear system.展开更多
This paper proposes two kinds of nonlinear general integral controllers, that is, one is generic and another is practical, for a class of uncertain nonlinear system. By extending equal ratio gain technique to a canoni...This paper proposes two kinds of nonlinear general integral controllers, that is, one is generic and another is practical, for a class of uncertain nonlinear system. By extending equal ratio gain technique to a canonical interval system matrix and using Lyapunov method, theorems to ensure regionally as well as semi-globally asymptotic stability are established in terms of some bounded information. Moreover, for the practical nonlinear integral controller, a real time method to evaluate the equal ratio coefficient is proposed such that its value can be chosen moderately. Theoretical analysis and simulation results demonstrated that not only nonlinear general integral control can effectively deal with the uncertain nonlinear system but also equal ratio gain technique is a powerful and practical tool to solve the control design problem of dynamics with the nonlinear and uncertain actions.展开更多
In recent years, the rationalization of concrete mix ratios which batches equal volumes of sand and gravel in building projects has been gaining grounds in the Cameroon construction industry. The main objective of thi...In recent years, the rationalization of concrete mix ratios which batches equal volumes of sand and gravel in building projects has been gaining grounds in the Cameroon construction industry. The main objective of this study is therefore to investigate if the concrete produced with rationalized mix ratio can be adopted as conventional mix ratio in terms of minimum required compression strength of concrete for buildings. Specifically this work compared the conventional mix ratio of 350 kg of cement: 400 liters of sand: 800 liters of gravel for a cubic meter and the rationalized batch of 350 kg of cement: 600 liters of sand: 600 liters of 5/15 gravel, 15/25 gravel and a combination of 5/15 + 15/25 gravel. Average compressive tests’results for both the conventional and the rationalized mix ratios were found to meet the minimum compressive strength of 65% at 7 days, 90% at 14 days and 99% at 28 days for gravel size combination 5/15 + 15/25. Single size gravel of 5/15 and 15/25 did not meet the minimum required compressive strength of 20 N/mm<sup>2</sup> for the rationalized mix ratio at 28 days curing based on the minimum compressive strength required, this study arrives at the conclusion that the equal volumes of sand and gravel mix ratio of 350 kg/m<sup>3</sup> of cement: 600 liters of sand: 600 liters of gravel mix ratio can be adopted as a conventional concrete mix ratio for gravel size 5/15 + 15/25.展开更多
Cooperative communication is going to play a vital role in the next generation wireless networks. In this paper we derive the expression for symbol error probability (SEP) of a two-user cooperative diversity system, w...Cooperative communication is going to play a vital role in the next generation wireless networks. In this paper we derive the expression for symbol error probability (SEP) of a two-user cooperative diversity system, where two users cooperate through the decode-and-forward (DF) relaying with binary phase-shift keying (BPSK) modulation in a flat Rayleigh fading environment. We compare the computational results obtained by the SEP expression with the simulation results using maximal-ratio combining (MRC), equal-gain combining (EGC) and selection combining (SC) techniques. Numerical results show the performance of a cooperative diversity system with maximal-ratio combining is giving better results compared to SC and EGC techniques.展开更多
Based on the volume constancy with equal flow-per-second and elastic sheet stability theory, a coupling relationship among lateral thickness difference, width-to-thickness ratio of cold rolling strip steel under ideal...Based on the volume constancy with equal flow-per-second and elastic sheet stability theory, a coupling relationship among lateral thickness difference, width-to-thickness ratio of cold rolling strip steel under ideal and actual working conditions, and shape is concluded according to the comprehensive influence principle of various factors on the critical instable shape analyzed in-depth. Firstly, the influence model under actual working condition is developed by referring to the basic relationship between lateral thickness difference and shape under ideal condition. The test results prove that for thin strips with thickness below 0.3 mm, their lateral thickness differences have significant effect on the shape. After then, the combined influence of lateral thickness difference and width-to-thickness ratio on the critical instable shape is concluded according to the elastic sheet stability model, with the synthetic effect of these three factors analyzed. Test data indicate that for cold rolling strip steel with width-to-thickness ratio above 3 000, the critical instability stress difference decreases significantly. Actual measurements are conducted on the lateral thickness differences of two rolls of typical strip manufactured by a sixhigh cold mill, with the influence law of lateral thickness variation and width-to-thickness ratio comprehensively investigated. It is demonstrated that during the production of ultrathin strip steel with different width-to-thickness ratios, the loading roll shapes should be fine adjusted according to the lateral thickness difference of input strips.Therefore, the variation of lateral thickness difference of output strips can meet the requirement of shape stability,so as to obtain fine shape.展开更多
文摘In this paper, the nonnull moments and the distributions of the likelihood ratio criterion for testing the equality of diagonal blocks with blockwise independence under certain alternatives have derived.
文摘Coutsourides (1980) derives an ad hoc nuisance parameter removal test for testing the equality of two multiple correlation coefficients of two independent p variate normal populations, under the assumption that a sample of size n is available from each population. He also extends his ad hoc nuisance parameter removal test to the testing of the equality of two multiple correlation matrices. This paper presents likelihood ratio tests for testing the equality of k multiple correlation coefficients, and also k partial correlation coefficients.
文摘In conjunction with general integral control, and synthesizing Singular perturbation and Equal ratio gain techniques, this paper proposes a new control design technique, named Power ratio gain technique, and then by Lyapunov method, theorem to ensure regionally as well as semi-globally asymptotic stability is established in terms of some bounded information. The highlight point is that it not only inherits all the essences of Singular perturbation and Equal ratio gain techniques but also makes up for their shortcomings, and then the conservatism of control input can be improved by compromising the Power ratio coefficients. Theoretical analysis, design example and simulation results show that Power ratio gain technique is a simple, practical and powerful tool to deal with the uncertain nonlinear system.
文摘In conjunction with linear general integral control, this paper proposes a fire-new control design technique, named Equal ratio gain technique, and then develops two kinds of control design methods, that is, Decomposition and Synthetic methods, for a class of uncertain nonlinear system. By Routh’s stability criterion, we demonstrate that a canonical system matrix can be designed to be always Hurwitz as any row controller gains, or controller and its integrator gains increase with the same ratio. By solving Lyapunov equation, we demonstrate that as any row controller gains, or controller and its integrator gains of a canonical system matrix tend to infinity with the same ratio, if it is always Hurwitz, and then the same row solutions of Lyapunov equation all tend to zero. By Equal ratio gain technique and Lyapunov method, theorems to ensure semi-globally asymptotic stability are established in terms of some bounded information. Moreover, the striking robustness of linear general integral control and PID control is clearly illustrated by Equal ratio gain technique. Theoretical analysis, design example and simulation results showed that Equal ratio gain technique is a powerful tool to solve the control design problem of uncertain nonlinear system.
文摘This paper proposes two kinds of nonlinear general integral controllers, that is, one is generic and another is practical, for a class of uncertain nonlinear system. By extending equal ratio gain technique to a canonical interval system matrix and using Lyapunov method, theorems to ensure regionally as well as semi-globally asymptotic stability are established in terms of some bounded information. Moreover, for the practical nonlinear integral controller, a real time method to evaluate the equal ratio coefficient is proposed such that its value can be chosen moderately. Theoretical analysis and simulation results demonstrated that not only nonlinear general integral control can effectively deal with the uncertain nonlinear system but also equal ratio gain technique is a powerful and practical tool to solve the control design problem of dynamics with the nonlinear and uncertain actions.
文摘In recent years, the rationalization of concrete mix ratios which batches equal volumes of sand and gravel in building projects has been gaining grounds in the Cameroon construction industry. The main objective of this study is therefore to investigate if the concrete produced with rationalized mix ratio can be adopted as conventional mix ratio in terms of minimum required compression strength of concrete for buildings. Specifically this work compared the conventional mix ratio of 350 kg of cement: 400 liters of sand: 800 liters of gravel for a cubic meter and the rationalized batch of 350 kg of cement: 600 liters of sand: 600 liters of 5/15 gravel, 15/25 gravel and a combination of 5/15 + 15/25 gravel. Average compressive tests’results for both the conventional and the rationalized mix ratios were found to meet the minimum compressive strength of 65% at 7 days, 90% at 14 days and 99% at 28 days for gravel size combination 5/15 + 15/25. Single size gravel of 5/15 and 15/25 did not meet the minimum required compressive strength of 20 N/mm<sup>2</sup> for the rationalized mix ratio at 28 days curing based on the minimum compressive strength required, this study arrives at the conclusion that the equal volumes of sand and gravel mix ratio of 350 kg/m<sup>3</sup> of cement: 600 liters of sand: 600 liters of gravel mix ratio can be adopted as a conventional concrete mix ratio for gravel size 5/15 + 15/25.
文摘Cooperative communication is going to play a vital role in the next generation wireless networks. In this paper we derive the expression for symbol error probability (SEP) of a two-user cooperative diversity system, where two users cooperate through the decode-and-forward (DF) relaying with binary phase-shift keying (BPSK) modulation in a flat Rayleigh fading environment. We compare the computational results obtained by the SEP expression with the simulation results using maximal-ratio combining (MRC), equal-gain combining (EGC) and selection combining (SC) techniques. Numerical results show the performance of a cooperative diversity system with maximal-ratio combining is giving better results compared to SC and EGC techniques.
基金the Special Research Fund for the National Major Science and Technology Achievement Transformation Project(No.2012GG01)the National Natural Science Foundation of China(No.51305387)the Provincial Natural Science Foundation of Hebei of China(No.E2015203103)
文摘Based on the volume constancy with equal flow-per-second and elastic sheet stability theory, a coupling relationship among lateral thickness difference, width-to-thickness ratio of cold rolling strip steel under ideal and actual working conditions, and shape is concluded according to the comprehensive influence principle of various factors on the critical instable shape analyzed in-depth. Firstly, the influence model under actual working condition is developed by referring to the basic relationship between lateral thickness difference and shape under ideal condition. The test results prove that for thin strips with thickness below 0.3 mm, their lateral thickness differences have significant effect on the shape. After then, the combined influence of lateral thickness difference and width-to-thickness ratio on the critical instable shape is concluded according to the elastic sheet stability model, with the synthetic effect of these three factors analyzed. Test data indicate that for cold rolling strip steel with width-to-thickness ratio above 3 000, the critical instability stress difference decreases significantly. Actual measurements are conducted on the lateral thickness differences of two rolls of typical strip manufactured by a sixhigh cold mill, with the influence law of lateral thickness variation and width-to-thickness ratio comprehensively investigated. It is demonstrated that during the production of ultrathin strip steel with different width-to-thickness ratios, the loading roll shapes should be fine adjusted according to the lateral thickness difference of input strips.Therefore, the variation of lateral thickness difference of output strips can meet the requirement of shape stability,so as to obtain fine shape.