期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A Solution of Inverse Eigenvalue Problems for Unitary Hessenberg Matrices
1
作者 Feng Li Lu Lin 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 2007年第2期131-139,共9页
Let H∈Cn×n be an n×n unitary upper Hessenberg matrix whose subdiagonal elements are all positive. Partition H as H=[H11 H12 H21 H22],(0.1) where H11 is its k×k leading principal submatrix; H22 is the c... Let H∈Cn×n be an n×n unitary upper Hessenberg matrix whose subdiagonal elements are all positive. Partition H as H=[H11 H12 H21 H22],(0.1) where H11 is its k×k leading principal submatrix; H22 is the complementary matrix of H11. In this paper, H is constructed uniquely when its eigenvalues and the eigenvalues of (H|^)11 and (H|^)22 are known. Here (H|^)11 and (H|^)22 are rank-one modifications of H11 and H22 respectively. 展开更多
关键词 Hessenberg酉阵 schur参数 逆特征值问题 子对角元素
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部