Vertical mass isolation(VMI)is one of the novel methods for the seismic control of structures.In this method,the entire structure is assumed to consist of two mass and stiffness subsystems,and an isolated layer is loc...Vertical mass isolation(VMI)is one of the novel methods for the seismic control of structures.In this method,the entire structure is assumed to consist of two mass and stiffness subsystems,and an isolated layer is located among them.In this study,the magnetorheological damper in three modes:passive-off,passive-on,and semi-active mode with variable voltage between zero and 9 volts was used as an isolated layer between two subsystems.Multi-degrees-of-freedom structures with 5,10,and 15 floors in two dimensions were examined under 11 pairs of near field earthquakes.On each level,the displacement of MR dampers was taken into account.The responses of maximum displacement,maximum inter-story drift,and maximum base shear in controlled and uncontrolled buildings were compared to assess the suggested approach for seismic control of the structures.According to the results,the semi-active control method can reduce the response by more than 12%compared to the uncontrolled mode in terms of maximum displacement of the mass subsystem of the structures.This method can reduce more than 16%and 20%of the responses compared to the uncontrolled mode in terms of maximum inter-story drift and base shear of the structure,respectively.展开更多
A dual isolation problem for rotating machines consists of isolation of housing structures from the machine vibrations and protection of machines during an earthquake to maintain their functionality. Desirable charact...A dual isolation problem for rotating machines consists of isolation of housing structures from the machine vibrations and protection of machines during an earthquake to maintain their functionality. Desirable characteristics of machine mounts for the above two purposes can differ significantly due to difference in nature of the excitation and performance criteria in the two situations. In this paper, relevant response quantities are identified that may be used to quantify performance and simplified models of rotating machines are presented using which these relevant response quantities may be calculated. Using random vibration approach with a stationary excitation, it is shown that significant improvement in seismic performance is achievable by proper mount design. Results of shaking table experiments performed with a realistic setup using a centrifugal pump are presented. It is concluded that a solution to this dual isolation problem lies in a semi-active mount capable switching its properties from ‘operation-optimum’ to ‘seismic-optimum’ at the onset of a seismic event.展开更多
This paper focuses on how to determine the instantaneous damping of the semi-active tuned mass damper (SATMD) with continuously variable damping.An off-and-towards-equilibrium (OTE) algorithm is employed to examine th...This paper focuses on how to determine the instantaneous damping of the semi-active tuned mass damper (SATMD) with continuously variable damping.An off-and-towards-equilibrium (OTE) algorithm is employed to examine the control performance of the structure/SATMD system by considering the damping as an assumptive control action.The damping modification of the SATMD is carried out according to the proposed OTE algorithm,which is formulated based on analysis of the structural movement under external excitations,and the measured responses of the structure at every time instant. As examples two numerical simulations of a five-storey and a ten-storey shear structures with a SATMD on the roof are conducted.The effectiveness on vibration reduction of MDOF systems subjected to seismic excitations is discussed.Analysis results show that the behavior of the structure with a SATMD is significantly improved and the feasibility of applying the OTE algorithm to the structural control design of SATMD is also verified.展开更多
To ensure the anti-earthquake performances of super-long-span suspension bridges, effective devices should be employed to control the seismic response of key sections. In this paper, four kinds of assessment functions...To ensure the anti-earthquake performances of super-long-span suspension bridges, effective devices should be employed to control the seismic response of key sections. In this paper, four kinds of assessment functions for seismic response control effect are formulated based on the mechanism of seismic response control with dampers and the seismic response characteristics of long-span suspension bridges. A new optimal placement method of dampers using penalty function and first-order optimization theory is then proposed. Runyang suspension bridge (RSB) with a main span of 1490 m is then taken as an example. After seismic response time-history analyses on RSB using different placements of dampers, the analysis results are optimized by employing the optimal placement method and the optimal placements of dampers with the four assessment functions are then achieved respectively. Comparison of the four optimal control effects show that different assessment functions can lead to different optimal placements when the number of dampers is certain, but all placements of dampers can reduce the seismic response of RSB significantly. The selection of assessment functions and damper optimal placement should be determined by the structural characteristics and by what is considered in the structures. Results also show that the first-order optimization is an effective method on determining the optimal placement of dampers.展开更多
China is a country where 100% of the territory is located in a seismic zone. Most of the strong earthquakes are over prediction. Most fatalities are caused by structural collapse. Earthquakes not only cause severe dam...China is a country where 100% of the territory is located in a seismic zone. Most of the strong earthquakes are over prediction. Most fatalities are caused by structural collapse. Earthquakes not only cause severe damage to structures, but can also damage non-structural elements on and inside of facilities. This can halt city life, and disrupt hospitals, airports, bridges, power plants, and other infrastructure. Designers need to use new techniques to protect structures and facilities inside. Isolation, energy dissipation and, control systems are more and more widely used in recent years in China. Currently, there are nearly 6,500 structures with isolation and about 3,000 structures with passive energy dissipation or hybrid control in China. The mitigation techniques are applied to structures like residential buildings, large or complex structures, bridges, underwater tunnels, historical or cultural relic sites, and industrial facilities, and are used for retrofitting of existed structures. This paper introduces design rules and some new and innovative devices for seismic isolation, energy dissipation and hybrid control for civil and industrial structures. This paper also discusses the development trends for seismic resistance, seismic isolation, passive and active control techniques for the future in China and in the world.展开更多
The spatial variability of input ground motion at supporting foundations plays a key role in the structural response of cable-stayed bridges (CSBs); therefore, spatial variation effects should be included in the ana...The spatial variability of input ground motion at supporting foundations plays a key role in the structural response of cable-stayed bridges (CSBs); therefore, spatial variation effects should be included in the analysis and design of effective vibration control systems. The control of CSBs represents a challenging and unique problem, with many complexities in modeling, control design and implementation, since the control system should be designed not only to mitigate the dynamic component of the structural response but also to counteract the effects of the pseudo-static component of the response. The spatial variability effects on the feasibility and efficiency of seismic control systems for the vibration control of CSBs are investigated in this paper. The assumption of uniform earthquake motion along the entire bridge may result in quantitative and qualitative differences in seismic response as compared with those produced by uniform motion at all supports. A systematic comparison of passive and active system performance in reducing the structural responses is performed, focusing on the effect of the spatially varying earthquake ground motion on the seismic response of a benchmark CSB model with different control strategies, and demonstrates the importance of accounting for the spatial variability of excitations.展开更多
In this study, the seismic response control of offshore platform structures with Shape Memory Alloy (SMA) dampers is investigated. A new SMA damper and its restoring force model are introduced for the calculation of s...In this study, the seismic response control of offshore platform structures with Shape Memory Alloy (SMA) dampers is investigated. A new SMA damper and its restoring force model are introduced for the calculation of seismic response reduction. Based on an actual platform structure and its mechanical model, the parameters which may affect the rate of shock absorption are analyzed, such as the number, position and characteristics of the SMA dampers and the condition of the site where the platform is located. The results show that the SMA damper is an effective control device for offshore platforms and satisfactory control can be achieved by proper selection of the parameters.展开更多
Commonly, seismic data processing procedures, such as stacking and prestack migration, require the ability to detect bad traces/shots and restore or replace them by interpolation, particularly when the seismic observa...Commonly, seismic data processing procedures, such as stacking and prestack migration, require the ability to detect bad traces/shots and restore or replace them by interpolation, particularly when the seismic observations are noisy or there are malfunctioned components in the recording system. However, currently available trace/shot interpolation methods in the spatial or Fourier domain must deal with requirements such as evenly sampled traces/shots, infinite bandwidth of the signals, and linear seismic events. In this paper, we present a novel method, termed the E-S (eigenspace seismic) method, using principal component analysis (PCA) of the seismic signal to address the issue of reliable detection or interpolation of bad traces/shots. The E-S method assumes the existence of a correlation between the observed seismic entities, such as trace or shot gathers, making it possible to estimate one of these entities from all others for interpolation or seismic quality control. It first transforms a trace (or shot) gather into an eigenspace using PCA. Then in the eigenspace, it treats every trace as a point with its loading scores of PCA as its coordinates. Simple linear, bilinear, or cubic spline 1 dimensional (1D) interpolation is used to determine PCA loading scores for any arbitrary coordinate in the eigenspace, which are then used to construct an interpolated trace for the desired position in physical space. This E-S method works with either regular or irregular sampling and, unlike various other published methods, it is well-suited for band-limited seismic records with curvilinear reflection events. We developed related algorithms and applied these to processed synthetic and offshore seismic survey data with or without simulated noises to demonstrate their performance. By comparing the interpolated and observed seismic traces, we find that the E-S method can effectively assess the quality of the trace, and restore poor quality data by interpolation. The successful processing of synthetic and real data using the E-S method presented in this approach will be widely applicable to seismic trace/shot interpolation and seismic quality control.展开更多
The practical design of the cable-stayed bridge of the 3rd Macao-Taipa bridge is investigated by the finite element analysis program ANSYS, and 3-D elements BEAM188 and BEAM4 are adopted to create a dynamic calculati...The practical design of the cable-stayed bridge of the 3rd Macao-Taipa bridge is investigated by the finite element analysis program ANSYS, and 3-D elements BEAM188 and BEAM4 are adopted to create a dynamic calculation model. In order to analyze the material nonlinear seismic response of the cable-stayed bridge, the nonlinear behaviors of the ductile plastic hinges of the bridge towers are taken into account by employing the nonlinear rotational spring element COMBIN40. To simulate a major earthquake, three earthquake records were chosen using a wave-choosing program and input into the bridge structure along longitudinal and transversal directions. Comparisons of the linear and nonlinear seismic responses of the cable-stayed bridge are performed. In addition, a study of TMD primary control is carried out using element MASS21 and element COMBIN14, and it is indicated that the effects of mitigation monitoring are evident.展开更多
Theoretical and practical issues concerning the multi-faceted task of mitigating the latero-torsional seismic response of a prototypal frame structure with asymmetric mass distribution are approached, Chevron braces w...Theoretical and practical issues concerning the multi-faceted task of mitigating the latero-torsional seismic response of a prototypal frame structure with asymmetric mass distribution are approached, Chevron braces with embedded magnetorheological dampers acting on the interstory drift are used to ensure additional energy dissipation. The semi-active control strategy employed to govern the modification of the damper characteristics via feedback is based on the selection of optimal forces according to a H2/LQG criterion, with respect to which the actual forces are regulated by a clipped-optimal logic. A dynamic observer is used to estimate the state through a non-collocated placement of the acceleration sensors. Several aspects to be addressed throughout the complex process including the design, modelization, and implementation phases of semi-active protection systems are discussed. Finally, experimental results obtained to mitigate the motion induced by ground excitation in a large-scale laboratory prototype, simulating the seismic response of a two-story building, are summarized.展开更多
This paper presents an experimental investigation on semi-active seismic response control of a multi- story building with a podium structure using multiple magnetorheological (MR) dampers manipulated by a logic contro...This paper presents an experimental investigation on semi-active seismic response control of a multi- story building with a podium structure using multiple magnetorheological (MR) dampers manipulated by a logic control algorithm.The experiments are performed in three phases on a seismic simulator with a slender 12-story building model representing a multi-story building and a relatively stiff 3-story building model typifying a podium structure.The first phase of the investigation is to assess control performance of using three MR dampers to link the 3-story building to the 12-story building,in which seismic responses of the controlled two buildings are compared with those of the two buildings without any connection and with rigid connection.The second phase is to investigate reliability of the semi-active control system and robustness of the logic control algorithm when 2 out of 3 MR dampers fail and when the electricity supply to MR dampers is completely stopped.The last phase is to examine sensitivity of semi-active control performance of two buildings to change in ground excitation.The experimental results show that multiple MR dampers with the logic control algorithm can achieve a significant reduction in seismic responses of both buildings.The proposed semi-active control system is of high reliability and good robustness.展开更多
The design mechanisms and methods of the invention are intended to minimize problems related to the safety of structures in the event of natural phenomena such as earthquakes, tornadoes, and strong winds. It is achiev...The design mechanisms and methods of the invention are intended to minimize problems related to the safety of structures in the event of natural phenomena such as earthquakes, tornadoes, and strong winds. It is achieved by controlling the deformations of the structure. Damage and deformation are closely related concepts since the control of deformations also controls the damage. The design method of applying artificial compression to the ends of all longitudinal reinforced concrete walls and, at the same time, connecting the ends of the walls to the ground using ground anchors placed at the depths of the boreholes, transfers the inertial stresses of the structure in the ground, which reacts as an external force in the structure’s response to seismic displacements. The wall with the artificial compression acquires dynamic, larger active cross-section and high axial and torsional stiffness, preventing all failures caused by inelastic deformation. By connecting the ends of all walls to the ground, we control the eigenfrequency of the structure and the ground during each seismic loading cycle, preventing inelastic displacements. At the same time, we ensure the strong bearing capacity of the foundation soil and the structure. By designing the walls correctly and placing them in proper locations, we prevent the torsional flexural buckling that occurs in asymmetrical floor plans, and metal and tall structures. Compression of the wall sections at the ends and their anchoring to the ground mitigates the transfer of deformations to the connection nodes, strengthens the wall section in terms of base shear force and shear stress of the sections, and increases the strength of the cross-sections to the tensile at the ends of the walls by introducing counteractive forces. The use of tendons within the ducts prevents longitudinal shear in the overlay concrete, while anchoring the walls to the foundation not only dissipates inertial forces to the ground but also prevents rotation of the walls, thus maintaining the structural integrity of the beams. The prestressing at the bilateral ends of the walls restores the structure to its original position even inelastic displacements by closing the opening of the developing cracks.展开更多
文摘Vertical mass isolation(VMI)is one of the novel methods for the seismic control of structures.In this method,the entire structure is assumed to consist of two mass and stiffness subsystems,and an isolated layer is located among them.In this study,the magnetorheological damper in three modes:passive-off,passive-on,and semi-active mode with variable voltage between zero and 9 volts was used as an isolated layer between two subsystems.Multi-degrees-of-freedom structures with 5,10,and 15 floors in two dimensions were examined under 11 pairs of near field earthquakes.On each level,the displacement of MR dampers was taken into account.The responses of maximum displacement,maximum inter-story drift,and maximum base shear in controlled and uncontrolled buildings were compared to assess the suggested approach for seismic control of the structures.According to the results,the semi-active control method can reduce the response by more than 12%compared to the uncontrolled mode in terms of maximum displacement of the mass subsystem of the structures.This method can reduce more than 16%and 20%of the responses compared to the uncontrolled mode in terms of maximum inter-story drift and base shear of the structure,respectively.
基金the Multidisciplinary Center for Earthquake Engineering Research, Buffalo, NY
文摘A dual isolation problem for rotating machines consists of isolation of housing structures from the machine vibrations and protection of machines during an earthquake to maintain their functionality. Desirable characteristics of machine mounts for the above two purposes can differ significantly due to difference in nature of the excitation and performance criteria in the two situations. In this paper, relevant response quantities are identified that may be used to quantify performance and simplified models of rotating machines are presented using which these relevant response quantities may be calculated. Using random vibration approach with a stationary excitation, it is shown that significant improvement in seismic performance is achievable by proper mount design. Results of shaking table experiments performed with a realistic setup using a centrifugal pump are presented. It is concluded that a solution to this dual isolation problem lies in a semi-active mount capable switching its properties from ‘operation-optimum’ to ‘seismic-optimum’ at the onset of a seismic event.
文摘This paper focuses on how to determine the instantaneous damping of the semi-active tuned mass damper (SATMD) with continuously variable damping.An off-and-towards-equilibrium (OTE) algorithm is employed to examine the control performance of the structure/SATMD system by considering the damping as an assumptive control action.The damping modification of the SATMD is carried out according to the proposed OTE algorithm,which is formulated based on analysis of the structural movement under external excitations,and the measured responses of the structure at every time instant. As examples two numerical simulations of a five-storey and a ten-storey shear structures with a SATMD on the roof are conducted.The effectiveness on vibration reduction of MDOF systems subjected to seismic excitations is discussed.Analysis results show that the behavior of the structure with a SATMD is significantly improved and the feasibility of applying the OTE algorithm to the structural control design of SATMD is also verified.
基金supported by the Outstanding Youth Fund of the National Natural Science Foundation of China (Grant No. 50725828)the National Natural Science Foundation of China for Young Scholars (Grant No. 50908046)the Ph. D. Programs Foundation of Ministry of Education of China (Grant No. 200802861012)
文摘To ensure the anti-earthquake performances of super-long-span suspension bridges, effective devices should be employed to control the seismic response of key sections. In this paper, four kinds of assessment functions for seismic response control effect are formulated based on the mechanism of seismic response control with dampers and the seismic response characteristics of long-span suspension bridges. A new optimal placement method of dampers using penalty function and first-order optimization theory is then proposed. Runyang suspension bridge (RSB) with a main span of 1490 m is then taken as an example. After seismic response time-history analyses on RSB using different placements of dampers, the analysis results are optimized by employing the optimal placement method and the optimal placements of dampers with the four assessment functions are then achieved respectively. Comparison of the four optimal control effects show that different assessment functions can lead to different optimal placements when the number of dampers is certain, but all placements of dampers can reduce the seismic response of RSB significantly. The selection of assessment functions and damper optimal placement should be determined by the structural characteristics and by what is considered in the structures. Results also show that the first-order optimization is an effective method on determining the optimal placement of dampers.
文摘China is a country where 100% of the territory is located in a seismic zone. Most of the strong earthquakes are over prediction. Most fatalities are caused by structural collapse. Earthquakes not only cause severe damage to structures, but can also damage non-structural elements on and inside of facilities. This can halt city life, and disrupt hospitals, airports, bridges, power plants, and other infrastructure. Designers need to use new techniques to protect structures and facilities inside. Isolation, energy dissipation and, control systems are more and more widely used in recent years in China. Currently, there are nearly 6,500 structures with isolation and about 3,000 structures with passive energy dissipation or hybrid control in China. The mitigation techniques are applied to structures like residential buildings, large or complex structures, bridges, underwater tunnels, historical or cultural relic sites, and industrial facilities, and are used for retrofitting of existed structures. This paper introduces design rules and some new and innovative devices for seismic isolation, energy dissipation and hybrid control for civil and industrial structures. This paper also discusses the development trends for seismic resistance, seismic isolation, passive and active control techniques for the future in China and in the world.
基金Alexander von Humboldt Fellowship-AvH (IV–AGY/1117497 STP)Japan Society for the Promotion of Science-JSPS Fellowship (P06138)
文摘The spatial variability of input ground motion at supporting foundations plays a key role in the structural response of cable-stayed bridges (CSBs); therefore, spatial variation effects should be included in the analysis and design of effective vibration control systems. The control of CSBs represents a challenging and unique problem, with many complexities in modeling, control design and implementation, since the control system should be designed not only to mitigate the dynamic component of the structural response but also to counteract the effects of the pseudo-static component of the response. The spatial variability effects on the feasibility and efficiency of seismic control systems for the vibration control of CSBs are investigated in this paper. The assumption of uniform earthquake motion along the entire bridge may result in quantitative and qualitative differences in seismic response as compared with those produced by uniform motion at all supports. A systematic comparison of passive and active system performance in reducing the structural responses is performed, focusing on the effect of the spatially varying earthquake ground motion on the seismic response of a benchmark CSB model with different control strategies, and demonstrates the importance of accounting for the spatial variability of excitations.
文摘In this study, the seismic response control of offshore platform structures with Shape Memory Alloy (SMA) dampers is investigated. A new SMA damper and its restoring force model are introduced for the calculation of seismic response reduction. Based on an actual platform structure and its mechanical model, the parameters which may affect the rate of shock absorption are analyzed, such as the number, position and characteristics of the SMA dampers and the condition of the site where the platform is located. The results show that the SMA damper is an effective control device for offshore platforms and satisfactory control can be achieved by proper selection of the parameters.
文摘Commonly, seismic data processing procedures, such as stacking and prestack migration, require the ability to detect bad traces/shots and restore or replace them by interpolation, particularly when the seismic observations are noisy or there are malfunctioned components in the recording system. However, currently available trace/shot interpolation methods in the spatial or Fourier domain must deal with requirements such as evenly sampled traces/shots, infinite bandwidth of the signals, and linear seismic events. In this paper, we present a novel method, termed the E-S (eigenspace seismic) method, using principal component analysis (PCA) of the seismic signal to address the issue of reliable detection or interpolation of bad traces/shots. The E-S method assumes the existence of a correlation between the observed seismic entities, such as trace or shot gathers, making it possible to estimate one of these entities from all others for interpolation or seismic quality control. It first transforms a trace (or shot) gather into an eigenspace using PCA. Then in the eigenspace, it treats every trace as a point with its loading scores of PCA as its coordinates. Simple linear, bilinear, or cubic spline 1 dimensional (1D) interpolation is used to determine PCA loading scores for any arbitrary coordinate in the eigenspace, which are then used to construct an interpolated trace for the desired position in physical space. This E-S method works with either regular or irregular sampling and, unlike various other published methods, it is well-suited for band-limited seismic records with curvilinear reflection events. We developed related algorithms and applied these to processed synthetic and offshore seismic survey data with or without simulated noises to demonstrate their performance. By comparing the interpolated and observed seismic traces, we find that the E-S method can effectively assess the quality of the trace, and restore poor quality data by interpolation. The successful processing of synthetic and real data using the E-S method presented in this approach will be widely applicable to seismic trace/shot interpolation and seismic quality control.
文摘The practical design of the cable-stayed bridge of the 3rd Macao-Taipa bridge is investigated by the finite element analysis program ANSYS, and 3-D elements BEAM188 and BEAM4 are adopted to create a dynamic calculation model. In order to analyze the material nonlinear seismic response of the cable-stayed bridge, the nonlinear behaviors of the ductile plastic hinges of the bridge towers are taken into account by employing the nonlinear rotational spring element COMBIN40. To simulate a major earthquake, three earthquake records were chosen using a wave-choosing program and input into the bridge structure along longitudinal and transversal directions. Comparisons of the linear and nonlinear seismic responses of the cable-stayed bridge are performed. In addition, a study of TMD primary control is carried out using element MASS21 and element COMBIN14, and it is indicated that the effects of mitigation monitoring are evident.
基金Project DPC-ReLUIS 2005-2008, RL n.7 "Technologies for the isolation and control of structures and infrastructures"
文摘Theoretical and practical issues concerning the multi-faceted task of mitigating the latero-torsional seismic response of a prototypal frame structure with asymmetric mass distribution are approached, Chevron braces with embedded magnetorheological dampers acting on the interstory drift are used to ensure additional energy dissipation. The semi-active control strategy employed to govern the modification of the damper characteristics via feedback is based on the selection of optimal forces according to a H2/LQG criterion, with respect to which the actual forces are regulated by a clipped-optimal logic. A dynamic observer is used to estimate the state through a non-collocated placement of the acceleration sensors. Several aspects to be addressed throughout the complex process including the design, modelization, and implementation phases of semi-active protection systems are discussed. Finally, experimental results obtained to mitigate the motion induced by ground excitation in a large-scale laboratory prototype, simulating the seismic response of a two-story building, are summarized.
基金The Hong Kong Polytechnic University under Area of Strategic Development Programme in Structural Control and Intelligent BuildingNational Natural Science Foundation of China Under Grant NNSF-50038010
文摘This paper presents an experimental investigation on semi-active seismic response control of a multi- story building with a podium structure using multiple magnetorheological (MR) dampers manipulated by a logic control algorithm.The experiments are performed in three phases on a seismic simulator with a slender 12-story building model representing a multi-story building and a relatively stiff 3-story building model typifying a podium structure.The first phase of the investigation is to assess control performance of using three MR dampers to link the 3-story building to the 12-story building,in which seismic responses of the controlled two buildings are compared with those of the two buildings without any connection and with rigid connection.The second phase is to investigate reliability of the semi-active control system and robustness of the logic control algorithm when 2 out of 3 MR dampers fail and when the electricity supply to MR dampers is completely stopped.The last phase is to examine sensitivity of semi-active control performance of two buildings to change in ground excitation.The experimental results show that multiple MR dampers with the logic control algorithm can achieve a significant reduction in seismic responses of both buildings.The proposed semi-active control system is of high reliability and good robustness.
文摘The design mechanisms and methods of the invention are intended to minimize problems related to the safety of structures in the event of natural phenomena such as earthquakes, tornadoes, and strong winds. It is achieved by controlling the deformations of the structure. Damage and deformation are closely related concepts since the control of deformations also controls the damage. The design method of applying artificial compression to the ends of all longitudinal reinforced concrete walls and, at the same time, connecting the ends of the walls to the ground using ground anchors placed at the depths of the boreholes, transfers the inertial stresses of the structure in the ground, which reacts as an external force in the structure’s response to seismic displacements. The wall with the artificial compression acquires dynamic, larger active cross-section and high axial and torsional stiffness, preventing all failures caused by inelastic deformation. By connecting the ends of all walls to the ground, we control the eigenfrequency of the structure and the ground during each seismic loading cycle, preventing inelastic displacements. At the same time, we ensure the strong bearing capacity of the foundation soil and the structure. By designing the walls correctly and placing them in proper locations, we prevent the torsional flexural buckling that occurs in asymmetrical floor plans, and metal and tall structures. Compression of the wall sections at the ends and their anchoring to the ground mitigates the transfer of deformations to the connection nodes, strengthens the wall section in terms of base shear force and shear stress of the sections, and increases the strength of the cross-sections to the tensile at the ends of the walls by introducing counteractive forces. The use of tendons within the ducts prevents longitudinal shear in the overlay concrete, while anchoring the walls to the foundation not only dissipates inertial forces to the ground but also prevents rotation of the walls, thus maintaining the structural integrity of the beams. The prestressing at the bilateral ends of the walls restores the structure to its original position even inelastic displacements by closing the opening of the developing cracks.