期刊文献+
共找到265,977篇文章
< 1 2 250 >
每页显示 20 50 100
Self-Adaptive Algorithms for the Split Common Fixed Point Problem of the Demimetric Mappings
1
作者 Xinhong Chen Yanlai Song +1 位作者 Jianying He Liping Gong 《Journal of Applied Mathematics and Physics》 2019年第10期2187-2199,共13页
The split common fixed point problem is an inverse problem that consists in finding an element in a fixed point set such that its image under a bounded linear operator belongs to another fixed-point set. In this paper... The split common fixed point problem is an inverse problem that consists in finding an element in a fixed point set such that its image under a bounded linear operator belongs to another fixed-point set. In this paper, we present new iterative algorithms for solving the split common fixed point problem of demimetric mappings in Hilbert spaces. Moreover, our algorithm does not need any prior information of the operator norm. Weak and strong convergence theorems are given under some mild assumptions. The results in this paper are the extension and improvement of the recent results in the literature. 展开更多
关键词 HILBERT Space Demimetric Mapping SPLIT Common Fixed Point PROBLEM self-adaptive algorithm
下载PDF
A Self-Adaptive Algorithm of the Clean Numerical Simulation(CNS)for Chaos
2
作者 Shijie Qin Shijun Liao 《Advances in Applied Mathematics and Mechanics》 SCIE 2023年第5期1191-1215,共25页
The background numerical noise#0 is determined by the maximum of truncation error and round-off error.For a chaotic system,the numerical error#(t)grows exponentially,say,#(t)=#0exp(kt),where k>0 is the so-called no... The background numerical noise#0 is determined by the maximum of truncation error and round-off error.For a chaotic system,the numerical error#(t)grows exponentially,say,#(t)=#0exp(kt),where k>0 is the so-called noise-growing exponent.This is the reason why one can not gain a convergent simulation of chaotic systems in a long enough interval of time by means of traditional algorithms in double precision,since the background numerical noise#0 might stop decreasing because of the use of double precision.This restriction can be overcome by means of the clean numerical simulation(CNS),which can decrease the background numerical noise#0 to any required tiny level.A lot of successful applications show the novelty and validity of the CNS.In this paper,we further propose some strategies to greatly increase the computational efficiency of the CNS algorithms for chaotic dynamical systems.It is highly suggested to keep a balance between truncation error and round-off error and besides to progressively enlarge the background numerical noise#0,since the exponentially increasing numerical noise#(t)is much larger than it.Some examples are given to illustrate the validity of our strategies for the CNS. 展开更多
关键词 CHAOS Clean Numerical Simulation(CNS) self-adaptive algorithm computational efficiency
下载PDF
Bidirectional rotating direct-current triboelectric nanogenerator with self-adaptive mechanical switching for harvesting reciprocating motion
3
作者 Donghan Lee Joonmin Chae +6 位作者 Sumin Cho Jong Woo Kim Awais Ahmad Mohammad Rezaul Karim Moonwoo La Sung Jea Park Dongwhi Choi 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第4期324-335,共12页
Amid the growing interest in triboelectric nanogenerators(TENGs)as novel energy-harvesting devices,several studies have focused on direct current(DC)TENGs to generate a stable DC output for operating electronic device... Amid the growing interest in triboelectric nanogenerators(TENGs)as novel energy-harvesting devices,several studies have focused on direct current(DC)TENGs to generate a stable DC output for operating electronic devices.However,owing to the working mechanisms of conventional DC TENGs,generating a stable DC output from reciprocating motion remains a challenge.Accordingly,we propose a bidirectional rotating DC TENG(BiR-TENG),which can generate DC outputs,regardless of the direction of rotation,from reciprocating motions.The distinct design of the BiR-TENG enables the mechanical rectification of the alternating current output into a rotational-direction-dependent DC output.Furthermore,it allows the conversion of the rotational-direction-dependent DC output into a unidirectional DC output by adapting the configurations depending on the rotational direction.Owing to these tailored design strategies and subsequent optimizations,the BiR-TENG could generate an effective unidirectional DC output.Applications of the BiR-TENG for the reciprocating motions of swinging doors and waves were demonstrated by harnessing this output.This study demonstrates the potential of the BiR-TENG design strategy as an effective and versatile solution for energy harvesting from reciprocating motions,highlighting the suitability of DC outputs as an energy source for electronic devices. 展开更多
关键词 direct-current triboelectric nanogenerator mechanical rectification self-adaptive mechanical design harvesting reciprocation motion
下载PDF
Dynamic Economic Scheduling with Self-Adaptive Uncertainty in Distribution Network Based on Deep Reinforcement Learning
4
作者 Guanfu Wang Yudie Sun +5 位作者 Jinling Li Yu Jiang Chunhui Li Huanan Yu He Wang Shiqiang Li 《Energy Engineering》 EI 2024年第6期1671-1695,共25页
Traditional optimal scheduling methods are limited to accurate physical models and parameter settings, which aredifficult to adapt to the uncertainty of source and load, and there are problems such as the inability to... Traditional optimal scheduling methods are limited to accurate physical models and parameter settings, which aredifficult to adapt to the uncertainty of source and load, and there are problems such as the inability to make dynamicdecisions continuously. This paper proposed a dynamic economic scheduling method for distribution networksbased on deep reinforcement learning. Firstly, the economic scheduling model of the new energy distributionnetwork is established considering the action characteristics of micro-gas turbines, and the dynamic schedulingmodel based on deep reinforcement learning is constructed for the new energy distribution network system with ahigh proportion of new energy, and the Markov decision process of the model is defined. Secondly, Second, for thechanging characteristics of source-load uncertainty, agents are trained interactively with the distributed networkin a data-driven manner. Then, through the proximal policy optimization algorithm, agents adaptively learn thescheduling strategy and realize the dynamic scheduling decision of the new energy distribution network system.Finally, the feasibility and superiority of the proposed method are verified by an improved IEEE 33-node simulationsystem. 展开更多
关键词 self-adaptive the uncertainty of sources and load deep reinforcement learning dynamic economic scheduling
下载PDF
A Self-Adapting and Efficient Dandelion Algorithm and Its Application to Feature Selection for Credit Card Fraud Detection
5
作者 Honghao Zhu MengChu Zhou +1 位作者 Yu Xie Aiiad Albeshri 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期377-390,共14页
A dandelion algorithm(DA) is a recently developed intelligent optimization algorithm for function optimization problems. Many of its parameters need to be set by experience in DA,which might not be appropriate for all... A dandelion algorithm(DA) is a recently developed intelligent optimization algorithm for function optimization problems. Many of its parameters need to be set by experience in DA,which might not be appropriate for all optimization problems. A self-adapting and efficient dandelion algorithm is proposed in this work to lower the number of DA's parameters and simplify DA's structure. Only the normal sowing operator is retained;while the other operators are discarded. An adaptive seeding radius strategy is designed for the core dandelion. The results show that the proposed algorithm achieves better performance on the standard test functions with less time consumption than its competitive peers. In addition, the proposed algorithm is applied to feature selection for credit card fraud detection(CCFD), and the results indicate that it can obtain higher classification and detection performance than the-state-of-the-art methods. 展开更多
关键词 Credit card fraud detection(CCFD) dandelion algorithm(DA) feature selection normal sowing operator
下载PDF
Acid-pickling plates and strips speed control system by microwave heating based on self-adaptive fuzzy PID algorithm 被引量:7
6
作者 杨彪 彭金辉 +3 位作者 郭胜惠 张世敏 李玮 何涛 《Journal of Central South University》 SCIE EI CAS 2012年第8期2179-2186,共8页
Double self-adaptive fuzzy PID algorithm-based control strategy was proposed to construct quasi-cascade control system to control the speed of the acid-pickling process of titanium plates and strips. It is very useful... Double self-adaptive fuzzy PID algorithm-based control strategy was proposed to construct quasi-cascade control system to control the speed of the acid-pickling process of titanium plates and strips. It is very useful in overcoming non-linear dynamic behavior, uncertain and time-varying parameters, un-modeled dynamics, and couples between the automatic turbulence control (ATC) and the automatic acid temperature control (AATC) with varying parameters during the operation process. The quasi-cascade control system of inner and outer loop self-adaptive fuzzy PID controller was built, which could effectively control the pickling speed of plates and strips. The simulated results and real application indicate that the plates and strips acid pickling speed control system has good performances of adaptively tracking the parameter variations and anti-disturbances, which ensures the match of acid pickling temperature and turbulence of flowing with acid pickling speed, improving the surface quality of plates and strips acid pickling, and energy efficiency. 展开更多
关键词 self-adaptive fuzzy PID algorithm microwave heating acid pickling plates and strips mixed-acid media
下载PDF
Self-adaptive PID controller of microwave drying rotary device tuning on-line by genetic algorithms 被引量:6
7
作者 杨彪 梁贵安 +5 位作者 彭金辉 郭胜惠 李玮 张世敏 李英伟 白松 《Journal of Central South University》 SCIE EI CAS 2013年第10期2685-2692,共8页
The control design, based on self-adaptive PID with genetic algorithms(GA) tuning on-line was investigated, for the temperature control of industrial microwave drying rotary device with the multi-layer(IMDRDWM) and wi... The control design, based on self-adaptive PID with genetic algorithms(GA) tuning on-line was investigated, for the temperature control of industrial microwave drying rotary device with the multi-layer(IMDRDWM) and with multivariable nonlinear interaction of microwave and materials. The conventional PID control strategy incorporated with optimization GA was put forward to maintain the optimum drying temperature in order to keep the moisture content below 1%, whose adaptation ability included the cost function of optimization GA according to the output change. Simulations on five different industrial process models and practical temperature process control system for selenium-enriched slag drying intensively by using IMDRDWM were carried out systematically, indicating the reliability and effectiveness of control design. The parameters of proposed control design are all on-line implemented without iterative predictive calculations, and the closed-loop system stability is guaranteed, which makes the developed scheme simpler in its synthesis and application, providing the practical guidelines for the control implementation and the parameter design. 展开更多
关键词 industrial microwave DRYING ROTARY device self-adaptive PID controller genetic algorithm ON-LINE tuning SELENIUM-ENRICHED SLAG
下载PDF
Modified Self-adaptive Immune Genetic Algorithm for Optimization of Combustion Side Reaction of p-Xylene Oxidation 被引量:1
8
作者 陶莉莉 孔祥东 +1 位作者 钟伟民 钱锋 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第6期1047-1052,共6页
In recent years, immune genetic algorithm (IGA) is gaining popularity for finding the optimal solution for non-linear optimization problems in many engineering applications. However, IGA with deterministic mutation fa... In recent years, immune genetic algorithm (IGA) is gaining popularity for finding the optimal solution for non-linear optimization problems in many engineering applications. However, IGA with deterministic mutation factor suffers from the problem of premature convergence. In this study, a modified self-adaptive immune genetic algorithm (MSIGA) with two memory bases, in which immune concepts are applied to determine the mutation parameters, is proposed to improve the searching ability of the algorithm and maintain population diversity. Performance comparisons with other well-known population-based iterative algorithms show that the proposed method converges quickly to the global optimum and overcomes premature problem. This algorithm is applied to optimize a feed forward neural network to measure the content of products in the combustion side reaction of p-xylene oxidation, and satisfactory results are obtained. 展开更多
关键词 self-adaptive immune genetic algorithm artificial neural network measurement p-xylene oxidation process
下载PDF
Unfolding neutron spectra from water-pumping-injection multilayered concentric sphere neutron spectrometer using self-adaptive differential evolution algorithm 被引量:5
9
作者 Rui Li Jian-Bo Yang +2 位作者 Xian-Guo Tuo Jie Xu Rui Shi 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2021年第3期41-51,共11页
A self-adaptive differential evolution neutron spectrum unfolding algorithm(SDENUA)is established in this study to unfold the neutron spectra obtained from a water-pumping-injection multilayered concentric sphere neut... A self-adaptive differential evolution neutron spectrum unfolding algorithm(SDENUA)is established in this study to unfold the neutron spectra obtained from a water-pumping-injection multilayered concentric sphere neutron spectrometer(WMNS).Specifically,the neutron fluence bounds are estimated to accelerate the algorithm convergence,and the minimum error between the optimal solution and input neutron counts with relative uncertainties is limited to 10^(-6)to avoid unnecessary calculations.Furthermore,the crossover probability and scaling factor are self-adaptively controlled.FLUKA Monte Carlo is used to simulate the readings of the WMNS under(1)a spectrum of Cf-252 and(2)its spectrum after being moderated,(3)a spectrum used for boron neutron capture therapy,and(4)a reactor spectrum.Subsequently,the measured neutron counts are unfolded using the SDENUA.The uncertainties of the measured neutron count and the response matrix are considered in the SDENUA,which does not require complex parameter tuning or an a priori default spectrum.The results indicate that the solutions of the SDENUA agree better with the IAEA spectra than those of MAXED and GRAVEL in UMG 3.1,and the errors of the final results calculated using the SDENUA are less than 12%.The established SDENUA can be used to unfold spectra from the WMNS. 展开更多
关键词 Water-pumping-injection multilayered spectrometer Neutron spectrum unfolding Differential evolution algorithm self-adaptive control
下载PDF
Dynamic self-adaptive ANP algorithm and its application to electric field simulation of aluminum reduction cell 被引量:1
10
作者 王雅琳 陈冬冬 +2 位作者 陈晓方 蔡国民 阳春华 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第12期4731-4739,共9页
Region partition(RP) is the key technique to the finite element parallel computing(FEPC),and its performance has a decisive influence on the entire process of analysis and computation.The performance evaluation index ... Region partition(RP) is the key technique to the finite element parallel computing(FEPC),and its performance has a decisive influence on the entire process of analysis and computation.The performance evaluation index of RP method for the three-dimensional finite element model(FEM) has been given.By taking the electric field of aluminum reduction cell(ARC) as the research object,the performance of two classical RP methods,which are Al-NASRA and NGUYEN partition(ANP) algorithm and the multi-level partition(MLP) method,has been analyzed and compared.The comparison results indicate a sound performance of ANP algorithm,but to large-scale models,the computing time of ANP algorithm increases notably.This is because the ANP algorithm determines only one node based on the minimum weight and just adds the elements connected to the node into the sub-region during each iteration.To obtain the satisfied speed and the precision,an improved dynamic self-adaptive ANP(DSA-ANP) algorithm has been proposed.With consideration of model scale,complexity and sub-RP stage,the improved algorithm adaptively determines the number of nodes and selects those nodes with small enough weight,and then dynamically adds these connected elements.The proposed algorithm has been applied to the finite element analysis(FEA) of the electric field simulation of ARC.Compared with the traditional ANP algorithm,the computational efficiency of the proposed algorithm has been shortened approximately from 260 s to 13 s.This proves the superiority of the improved algorithm on computing time performance. 展开更多
关键词 finite element parallel computing(FEPC) region partition(RP) dynamic self-adaptive ANP(DSA-ANP) algorithm electric field simulation aluminum reduction cell(ARC)
下载PDF
Enhanced self-adaptive evolutionary algorithm for numerical optimization 被引量:1
11
作者 Yu Xue YiZhuang +2 位作者 Tianquan Ni Jian Ouyang ZhouWang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第6期921-928,共8页
There are many population-based stochastic search algorithms for solving optimization problems. However, the universality and robustness of these algorithms are still unsatisfactory. This paper proposes an enhanced se... There are many population-based stochastic search algorithms for solving optimization problems. However, the universality and robustness of these algorithms are still unsatisfactory. This paper proposes an enhanced self-adaptiveevolutionary algorithm (ESEA) to overcome the demerits above. In the ESEA, four evolutionary operators are designed to enhance the evolutionary structure. Besides, the ESEA employs four effective search strategies under the framework of the self-adaptive learning. Four groups of the experiments are done to find out the most suitable parameter values for the ESEA. In order to verify the performance of the proposed algorithm, 26 state-of-the-art test functions are solved by the ESEA and its competitors. The experimental results demonstrate that the universality and robustness of the ESEA out-perform its competitors. 展开更多
关键词 self-adaptive numerical optimization evolutionary al-gorithm stochastic search algorithm.
下载PDF
Self-adaptive learning based discrete differential evolution algorithm for solving CJWTA problem 被引量:6
12
作者 Yu Xue Yi Zhuang +2 位作者 Tianquan Ni Siru Ni Xuezhi Wen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第1期59-68,共10页
Cooperative jamming weapon-target assignment (CJWTA) problem is a key issue in electronic countermeasures (ECM). Some symbols which relevant to the CJWTA are defined firstly. Then, a formulation of jamming fitness... Cooperative jamming weapon-target assignment (CJWTA) problem is a key issue in electronic countermeasures (ECM). Some symbols which relevant to the CJWTA are defined firstly. Then, a formulation of jamming fitness is presented. Final y, a model of the CJWTA problem is constructed. In order to solve the CJWTA problem efficiently, a self-adaptive learning based discrete differential evolution (SLDDE) algorithm is proposed by introduc-ing a self-adaptive learning mechanism into the traditional discrete differential evolution algorithm. The SLDDE algorithm steers four candidate solution generation strategies simultaneously in the framework of the self-adaptive learning mechanism. Computa-tional simulations are conducted on ten test instances of CJWTA problem. The experimental results demonstrate that the proposed SLDDE algorithm not only can generate better results than only one strategy based discrete differential algorithms, but also outper-forms two algorithms which are proposed recently for the weapon-target assignment problems. 展开更多
关键词 global optimization self-adaptive discrete differentialevolution weapon-target assignment (WTA) cooperative jamming.
下载PDF
Self-adaptive Bat Algorithm With Genetic Operations 被引量:4
13
作者 Jing Bi Haitao Yuan +2 位作者 Jiahui Zhai MengChu Zhou H.Vincent Poor 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第7期1284-1294,共11页
Swarm intelligence in a bat algorithm(BA)provides social learning.Genetic operations for reproducing individuals in a genetic algorithm(GA)offer global search ability in solving complex optimization problems.Their int... Swarm intelligence in a bat algorithm(BA)provides social learning.Genetic operations for reproducing individuals in a genetic algorithm(GA)offer global search ability in solving complex optimization problems.Their integration provides an opportunity for improved search performance.However,existing studies adopt only one genetic operation of GA,or design hybrid algorithms that divide the overall population into multiple subpopulations that evolve in parallel with limited interactions only.Differing from them,this work proposes an improved self-adaptive bat algorithm with genetic operations(SBAGO)where GA and BA are combined in a highly integrated way.Specifically,SBAGO performs their genetic operations of GA on previous search information of BA solutions to produce new exemplars that are of high-diversity and high-quality.Guided by these exemplars,SBAGO improves both BA’s efficiency and global search capability.We evaluate this approach by using 29 widely-adopted problems from four test suites.SBAGO is also evaluated by a real-life optimization problem in mobile edge computing systems.Experimental results show that SBAGO outperforms its widely-used and recently proposed peers in terms of effectiveness,search accuracy,local optima avoidance,and robustness. 展开更多
关键词 Bat algorithm(BA) genetic algorithm(GA) hybrid algorithm learning mechanism meta-heuristic optimization algorithms
下载PDF
Formal Modeling of Self-Adaptive Resource Scheduling in Cloud
14
作者 Atif Ishaq Khan Syed Asad Raza Kazmi Awais Qasim 《Computers, Materials & Continua》 SCIE EI 2023年第1期1183-1197,共15页
A self-adaptive resource provisioning on demand is a critical factor in cloud computing.The selection of accurate amount of resources at run time is not easy due to dynamic nature of requests.Therefore,a self-adaptive... A self-adaptive resource provisioning on demand is a critical factor in cloud computing.The selection of accurate amount of resources at run time is not easy due to dynamic nature of requests.Therefore,a self-adaptive strategy of resources is required to deal with dynamic nature of requests based on run time change in workload.In this paper we proposed a Cloud-based Adaptive Resource Scheduling Strategy(CARSS)Framework that formally addresses these issues and is more expressive than traditional approaches.The decision making in CARSS is based on more than one factors.TheMAPE-K based framework determines the state of the resources based on their current utilization.Timed-Arc Petri Net(TAPN)is used to model system formally and behaviour is expressed in TCTL,while TAPAAL model checker verifies the underline properties of the system. 展开更多
关键词 Formal modeling MULTI-AGENT self-adaptive cloud computing
下载PDF
An improved self-adaptive membrane computing optimization algorithm and its applications in residue hydrogenating model parameter estimation 被引量:1
15
作者 芦会彬 薄翠梅 杨世品 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第10期3909-3915,共7页
In order to solve the non-linear and high-dimensional optimization problems more effectively, an improved self-adaptive membrane computing(ISMC) optimization algorithm was proposed. The proposed ISMC algorithm applied... In order to solve the non-linear and high-dimensional optimization problems more effectively, an improved self-adaptive membrane computing(ISMC) optimization algorithm was proposed. The proposed ISMC algorithm applied improved self-adaptive crossover and mutation formulae that can provide appropriate crossover operator and mutation operator based on different functions of the objects and the number of iterations. The performance of ISMC was tested by the benchmark functions. The simulation results for residue hydrogenating kinetics model parameter estimation show that the proposed method is superior to the traditional intelligent algorithms in terms of convergence accuracy and stability in solving the complex parameter optimization problems. 展开更多
关键词 optimization algorithm membrane computing benchmark function improved self-adaptive operator
下载PDF
In-situ interfacial passivation and self-adaptability synergistically stabilizing all-solid-state lithium metal batteries 被引量:1
16
作者 Huanhui Chen Xing Cao +6 位作者 Moujie Huang Xiangzhong Ren Yubin Zhao Liang Yu Ya Liu Liubiao Zhong Yejun Qiu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期282-292,I0007,共12页
The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined ... The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined with self-adaptability strategy to reinforce Li_(0.33)La_(0.557)TiO_(3)(LLTO)-based solid-state batteries.Specifically,a functional SEI enriched with LiF/Li_(3)PO_(4) is formed by in-situ electrochemical conversion,which is greatly beneficial to improving interface compatibility and enhancing ion transport.While the polarized dielectric BaTiO_(3)-polyamic acid(BTO-PAA,BP)film greatly improves the Li-ion transport kinetics and homogenizes the Li deposition.As expected,the resulting electrolyte offers considerable ionic conductivity at room temperature(4.3 x 10~(-4)S cm^(-1))and appreciable electrochemical decomposition voltage(5.23 V)after electrochemical passivation.For Li-LiFePO_(4) batteries,it shows a high specific capacity of 153 mA h g^(-1)at 0.2C after 100 cycles and a long-term durability of 115 mA h g^(-1)at 1.0 C after 800 cycles.Additionally,a stable Li plating/stripping can be achieved for more than 900 h at 0.5 mA cm^(-2).The stabilization mechanisms are elucidated by ex-situ XRD,ex-situ XPS,and ex-situ FTIR techniques,and the corresponding results reveal that the interfacial passivation combined with polarization effect is an effective strategy for improving the electrochemical performance.The present study provides a deeper insight into the dynamic adjustment of electrode-electrolyte interfacial for solid-state lithium batteries. 展开更多
关键词 Solid-state lithium batteries Composite solid electrolyte In-situ polymerization Interfacial passivation layer self-adaptability
下载PDF
An algorithm to remove noise from locomotive bearing vibration signal based on self-adaptive EEMD filter 被引量:4
17
作者 王春生 沙春阳 +1 位作者 粟梅 胡玉坤 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第2期478-488,共11页
An improved ensemble empirical mode decomposition(EEMD) algorithm is described in this work, in which the sifting and ensemble number are self-adaptive. In particular, the new algorithm can effectively avoid the mode ... An improved ensemble empirical mode decomposition(EEMD) algorithm is described in this work, in which the sifting and ensemble number are self-adaptive. In particular, the new algorithm can effectively avoid the mode mixing problem. The algorithm has been validated with a simulation signal and locomotive bearing vibration signal. The results show that the proposed self-adaptive EEMD algorithm has a better filtering performance compared with the conventional EEMD. The filter results further show that the feature of the signal can be distinguished clearly with the proposed algorithm, which implies that the fault characteristics of the locomotive bearing can be detected successfully. 展开更多
关键词 locomotive bearing vibration signal enhancement self-adaptive EEMD parameter-varying noise signal feature extraction
下载PDF
Self-adaptive bulk/surface engineering of Bi_(x)O_(y)Br_(z) towards enhanced photocatalysis:Current status and future challenges
18
作者 Zhiwei Wu Bidyut Kumar Kundu +5 位作者 Wanqiong Kang Lei Mao Sen Zhang Lan Yuan Fen Guo Chuang Han 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第7期387-413,I0009,共28页
The bulk/surface states of semiconductor photocatalysts are imperative parameters to maneuver their performance by significantly affecting the key processes of photocatalysis including light absorption,separation of c... The bulk/surface states of semiconductor photocatalysts are imperative parameters to maneuver their performance by significantly affecting the key processes of photocatalysis including light absorption,separation of charge carrier,and surface site reaction.Recent years have witnessed the encouraging progress of self-adaptive bulk/surface engineered Bi_(x)O_(y)Br_(z) for photocatalytic applications spanning various fields.However,despite the maturity of current research,the interaction between the bulk/surface state and the performance of Bi_(x)O_(y)Br_(z) has not yet been fully understood and highlighted.In this regard,a timely tutorial overview is quite urgent to summarize the most recent key progress and outline developing obstacles in this exciting area.Herein,the structural characteristics and fundamental principles of Bi_(x)O_(y)Br_(z)for driving photocatalytic reaction as well as related key issues are firstly reviewed.Then,we for the first time summarized different self-adaptive engineering processes over Bi_(x)O_(y)Br_(z)followed by a classification of the generation approaches towards diverse Bi_(x)O_(y)Br_(z)materials.The features of different strategies,the up-to-date characterization techniques to detect bulk/surface states,and the effect of bulk/surface states on improving the photoactivity of Bi_(x)O_(y)Br_(z)in expanded applications are further discussed.Finally,the present research status,challenges,and future research opportunities of self-adaptive bulk/surface engineered Bi_(x)O_(y)Br_(z)are prospected.It is anticipated that this critical review can trigger deeper investigations and attract upcoming innovative ideas on the rational design of Bi_(x)O_(y)Br_(z)-based photocatalysts. 展开更多
关键词 Bismuth oxybromide self-adaptive engineering Pollutant degradation Energy application PHOTOCATALYSIS
下载PDF
MCWOA Scheduler:Modified Chimp-Whale Optimization Algorithm for Task Scheduling in Cloud Computing 被引量:1
19
作者 Chirag Chandrashekar Pradeep Krishnadoss +1 位作者 Vijayakumar Kedalu Poornachary Balasundaram Ananthakrishnan 《Computers, Materials & Continua》 SCIE EI 2024年第2期2593-2616,共24页
Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay ... Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay can hamper the performance of IoT-enabled cloud platforms.However,efficient task scheduling can lower the cloud infrastructure’s energy consumption,thus maximizing the service provider’s revenue by decreasing user job processing times.The proposed Modified Chimp-Whale Optimization Algorithm called Modified Chimp-Whale Optimization Algorithm(MCWOA),combines elements of the Chimp Optimization Algorithm(COA)and the Whale Optimization Algorithm(WOA).To enhance MCWOA’s identification precision,the Sobol sequence is used in the population initialization phase,ensuring an even distribution of the population across the solution space.Moreover,the traditional MCWOA’s local search capabilities are augmented by incorporating the whale optimization algorithm’s bubble-net hunting and random search mechanisms into MCWOA’s position-updating process.This study demonstrates the effectiveness of the proposed approach using a two-story rigid frame and a simply supported beam model.Simulated outcomes reveal that the new method outperforms the original MCWOA,especially in multi-damage detection scenarios.MCWOA excels in avoiding false positives and enhancing computational speed,making it an optimal choice for structural damage detection.The efficiency of the proposed MCWOA is assessed against metrics such as energy usage,computational expense,task duration,and delay.The simulated data indicates that the new MCWOA outpaces other methods across all metrics.The study also references the Whale Optimization Algorithm(WOA),Chimp Algorithm(CA),Ant Lion Optimizer(ALO),Genetic Algorithm(GA)and Grey Wolf Optimizer(GWO). 展开更多
关键词 Cloud computing SCHEDULING chimp optimization algorithm whale optimization algorithm
下载PDF
Underwater four-quadrant dual-beam circumferential scanning laser fuze using nonlinear adaptive backscatter filter based on pauseable SAF-LMS algorithm 被引量:1
20
作者 Guangbo Xu Bingting Zha +2 位作者 Hailu Yuan Zhen Zheng He Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第7期1-13,共13页
The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant ... The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance. 展开更多
关键词 Laser fuze Underwater laser detection Backscatter adaptive filter Spline least mean square algorithm Nonlinear filtering algorithm
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部