本研究基于水稻孕穗期、抽穗期、灌浆期和成熟期4个生育期的Sentinel-2遥感数据,分析各生育期内卫星遥感光谱参数与稻米品质指标的关系,建立基于各生育期卫星光谱信息的水稻品质指标预测模型。将5种稻米品质指标分别与4个生育期内的光...本研究基于水稻孕穗期、抽穗期、灌浆期和成熟期4个生育期的Sentinel-2遥感数据,分析各生育期内卫星遥感光谱参数与稻米品质指标的关系,建立基于各生育期卫星光谱信息的水稻品质指标预测模型。将5种稻米品质指标分别与4个生育期内的光谱参数进行皮尔逊相关性分析,结果表明,5项品质指标在4个生育期内均与光谱参数有不同程度相关性。然后筛选出相关性效果显著的光谱参数,用于建立各品质指标的预测方程,建模结果表明,基于卫星遥感光谱信息解释率由大到小的稻米品质指标依次是精米率>长宽比>蛋白质含量>直链淀粉含量>糙米率;卫星遥感光谱反演稻米各品质指标所在的最佳生育期不同,糙米率和精米率的最佳生育期为抽穗期,其建模决定系数(Coefficient of Determination,R^(2))分别为0.461和0.893;长宽比的最佳生育期为成熟期,R^(2)为0.878;直链淀粉含量和蛋白质含量的最佳生育期为灌浆期,R^(2)分别为0.646和0.647;基于卫星遥感光谱信息的稻米品质模型验证效果较好,解释率为51%~74%。可见,利用卫星遥感技术能够实现大范围水稻品质指标定量监测与评估。展开更多
本文利用6S(Second Simulation of a Satellite Signal in the Solar Spectrum)、Acolite DSF(Dark spectrum fitting)、C2RCC(Case 2 Regional Coast Color)、SeaDas(SeaWiFS Data Analysis System)、Sen2Cor(Sentinel 2 Correction)、...本文利用6S(Second Simulation of a Satellite Signal in the Solar Spectrum)、Acolite DSF(Dark spectrum fitting)、C2RCC(Case 2 Regional Coast Color)、SeaDas(SeaWiFS Data Analysis System)、Sen2Cor(Sentinel 2 Correction)、Polymer(Polynomial based algorithm applied to MERIS)和iCOR(Image correction for atmospheric effects)7种大气校正算法,结合松花湖、月亮泡、小兴凯湖实测遥感反射率数据对“哨兵-2号”(Sentinel-2)数据进行大气校正研究,验证算法性能。整体校正结果显示,相较于实测遥感反射率,上述7种大气校正算法均在可见光波段(400~800 nm)呈现不同程度的低估。除C2RCC算法外,其余6种算法校正后的遥感反射率与实测光谱曲线变化趋势基本吻合,其中Sen2Cor算法与iCOR算法性能最佳,Polymer算法性能最差;在单波段校正精度对比中,Sen2Cor和iCOR算法几乎所有波段的均方根误差和平均绝对百分比误差都低于其余5种算法。Sen2Cor算法在560 nm、665 nm和705 nm处校正精度优于其余6种算法,iCOR算法在443 nm和740 nm处有良好的表现,在490 nm处6S算法校正精度最高,拥有最低的均方根误差(0.0059 sr^(−1))和平均绝对百分比误差(21.40%)。结果表明,这7种大气校正算法均可以在一定程度上去除大气影响,增加影像的可用性,Sen2Cor算法和iCOR算法更适用于本文所研究水体或相似水体。展开更多
文摘本研究基于水稻孕穗期、抽穗期、灌浆期和成熟期4个生育期的Sentinel-2遥感数据,分析各生育期内卫星遥感光谱参数与稻米品质指标的关系,建立基于各生育期卫星光谱信息的水稻品质指标预测模型。将5种稻米品质指标分别与4个生育期内的光谱参数进行皮尔逊相关性分析,结果表明,5项品质指标在4个生育期内均与光谱参数有不同程度相关性。然后筛选出相关性效果显著的光谱参数,用于建立各品质指标的预测方程,建模结果表明,基于卫星遥感光谱信息解释率由大到小的稻米品质指标依次是精米率>长宽比>蛋白质含量>直链淀粉含量>糙米率;卫星遥感光谱反演稻米各品质指标所在的最佳生育期不同,糙米率和精米率的最佳生育期为抽穗期,其建模决定系数(Coefficient of Determination,R^(2))分别为0.461和0.893;长宽比的最佳生育期为成熟期,R^(2)为0.878;直链淀粉含量和蛋白质含量的最佳生育期为灌浆期,R^(2)分别为0.646和0.647;基于卫星遥感光谱信息的稻米品质模型验证效果较好,解释率为51%~74%。可见,利用卫星遥感技术能够实现大范围水稻品质指标定量监测与评估。
文摘本文利用6S(Second Simulation of a Satellite Signal in the Solar Spectrum)、Acolite DSF(Dark spectrum fitting)、C2RCC(Case 2 Regional Coast Color)、SeaDas(SeaWiFS Data Analysis System)、Sen2Cor(Sentinel 2 Correction)、Polymer(Polynomial based algorithm applied to MERIS)和iCOR(Image correction for atmospheric effects)7种大气校正算法,结合松花湖、月亮泡、小兴凯湖实测遥感反射率数据对“哨兵-2号”(Sentinel-2)数据进行大气校正研究,验证算法性能。整体校正结果显示,相较于实测遥感反射率,上述7种大气校正算法均在可见光波段(400~800 nm)呈现不同程度的低估。除C2RCC算法外,其余6种算法校正后的遥感反射率与实测光谱曲线变化趋势基本吻合,其中Sen2Cor算法与iCOR算法性能最佳,Polymer算法性能最差;在单波段校正精度对比中,Sen2Cor和iCOR算法几乎所有波段的均方根误差和平均绝对百分比误差都低于其余5种算法。Sen2Cor算法在560 nm、665 nm和705 nm处校正精度优于其余6种算法,iCOR算法在443 nm和740 nm处有良好的表现,在490 nm处6S算法校正精度最高,拥有最低的均方根误差(0.0059 sr^(−1))和平均绝对百分比误差(21.40%)。结果表明,这7种大气校正算法均可以在一定程度上去除大气影响,增加影像的可用性,Sen2Cor算法和iCOR算法更适用于本文所研究水体或相似水体。