There is a great interest in monolithic 4H-SiC Junction Barrier Schottky (JBS) diodes with the capability of a high forward current for industrial power applications. In this paper, we report large-area monolithic 4...There is a great interest in monolithic 4H-SiC Junction Barrier Schottky (JBS) diodes with the capability of a high forward current for industrial power applications. In this paper, we report large-area monolithic 4H-SiC JBS diodes fabricated on a 10 μm 4H-SiC epitaxial layer doped to 6×1015 cm-3. JBS diodes with an active area of 30 mm2 had a forward current of up to 330 A at a forward voltage of 5 V, which corresponds to a current density of 1100 A/cm2. A near ideal breakdown voltage of 1.6 kV was also achieved for a reverse current of up to 100 gA through the use of an optimum multiple floating guard rings (MFGR) termination, which is about 87.2% of the theoretical value. The differential specific-on resistance (RSP-ON) was meas- ured to be 3.3 mΩcm2, leading to a FOM (VB2/RSP-ON) value of 0.78 GW/cm2, which is very close to the theoretical limit of the tradeoff between the specific-on resistance and breakdown voltage for 4H-SiC unipolar devices.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.61404098,61176070 and 61274079)the Natural Science Foundation of Shaanxi Province(Grant No.2013JQ8012)+2 种基金Doctoral Fund of Ministry of Education of China(Grant Nos.20110203110010 and 20130203120017)National Key Basic Research Program of China(Grant Nos.2015CB759600)Key Specific Projects of Ministry of Education of China(Grant No.625010101)
文摘There is a great interest in monolithic 4H-SiC Junction Barrier Schottky (JBS) diodes with the capability of a high forward current for industrial power applications. In this paper, we report large-area monolithic 4H-SiC JBS diodes fabricated on a 10 μm 4H-SiC epitaxial layer doped to 6×1015 cm-3. JBS diodes with an active area of 30 mm2 had a forward current of up to 330 A at a forward voltage of 5 V, which corresponds to a current density of 1100 A/cm2. A near ideal breakdown voltage of 1.6 kV was also achieved for a reverse current of up to 100 gA through the use of an optimum multiple floating guard rings (MFGR) termination, which is about 87.2% of the theoretical value. The differential specific-on resistance (RSP-ON) was meas- ured to be 3.3 mΩcm2, leading to a FOM (VB2/RSP-ON) value of 0.78 GW/cm2, which is very close to the theoretical limit of the tradeoff between the specific-on resistance and breakdown voltage for 4H-SiC unipolar devices.