期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于Kriging遗传算法的高速公路应急车道管控优化
1
作者 唐进君 胡立鹏 +1 位作者 李明洋 张璇 《系统仿真学报》 CAS CSCD 北大核心 2024年第5期1165-1178,共14页
针对如何在不同交通流状况下有效提高高速公路运行效率和降低安全风险的问题,提出基于Kriging代理模型的遗传算法优化应急车道管控策略。结合应急车道开放策略的时空特性设计数学优化模型,通过引入Kriging代理模型,结合遗传算法搭建优... 针对如何在不同交通流状况下有效提高高速公路运行效率和降低安全风险的问题,提出基于Kriging代理模型的遗传算法优化应急车道管控策略。结合应急车道开放策略的时空特性设计数学优化模型,通过引入Kriging代理模型,结合遗传算法搭建优化框架,采用仿真软件获取数据训练代理模型,以此求解带有开放时间和开放空间双重约束的总行程时间与总碰撞暴露时间最小化问题。对车道控制时间与空间变量的变化频次进行了约束,并对目标函数中效率与安全指标权重变化对优化结果的影响进行了分析。实验表明:该优化方法使路网总行程时间减小14.9%,碰撞暴露时间减小44.2%,控制效果提升。 展开更多
关键词 智慧高速 应急车道 Kriging代理模型 遗传算法 时空约束 SUMO(simulation of urban mobility)
原文传递
A multi process value-based reinforcement learning environment framework for adaptive traffic signal control
2
作者 Jie Cao Dailin Huang +1 位作者 Liang Hou Jialin Ma 《Journal of Control and Decision》 EI 2023年第2期229-236,共8页
Realising adaptive traffic signal control(ATSC)through reinforcement learning(RL)is an important means to easetraffic congestion.This paper finds the computing power of the central processing unit(CPU)cannot fully use... Realising adaptive traffic signal control(ATSC)through reinforcement learning(RL)is an important means to easetraffic congestion.This paper finds the computing power of the central processing unit(CPU)cannot fully usedwhen Simulation of Urban MObility(SUMO)is used as an environment simulator for RL.We propose a multi-process framework under value-basedRL.First,we propose a shared memory mechanism to improve exploration efficiency.Second,we use the weight sharing mechanism to solve the problem of asynchronous multi-process agents.We also explained the reason shared memory in ATSC does not lead to early local optima of the agent.Wehave verified in experiments the sampling efficiency of the 10-process method is 8.259 times that of the single process.The sampling efficiency of the 20-process method is 13.409 times that of the single process.Moreover,the agent can also converge to the optimal solution. 展开更多
关键词 Adaptive traffic signal control simulation of urban mobility MULTI-PROCESS reinforcement learning value-based
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部