A double-parameter oxygen lance used in a 300 t converter was designed to improve the metallurgical performance. A small-scale measurement of the jet behavior was done using a computer controlled scanning system. The ...A double-parameter oxygen lance used in a 300 t converter was designed to improve the metallurgical performance. A small-scale measurement of the jet behavior was done using a computer controlled scanning system. The experimental data on the velocity distribution at the jet centerline, the contour map of the jet velocity, the deviation of the jet centerline, and the velocity distribution of the axial section were compiled. According to the results of the small-scale measurement, the double-parameter lance was also employed for a BOF experiment. The metallurgy inde- xes show that the metallurgical performance was highly promoted by use of the double-parameter lance.展开更多
A three-dimensional computational fluid dynamics (CFD) model was developed to simulate a 150-t top-blown converter. The ef-fect of different lance heights on the cavity shape was investigated using the volume of flu...A three-dimensional computational fluid dynamics (CFD) model was developed to simulate a 150-t top-blown converter. The ef-fect of different lance heights on the cavity shape was investigated using the volume of fluid (VOF) method. Numerical simulation results can reflect the actual molten bath surface waves impinged by the supersonic oxygen jets. With increasing lance height, the cavity depth de-creases, and the cavity area, varying like a parabola, increases and then decreases. The cavity area maximizes at the lance height of 1.3 m. Under the three different lance heights simulated in this study, all of the largest impact velocities at the molten bath surface are between 50 m/s and 100 m/s.展开更多
文摘A double-parameter oxygen lance used in a 300 t converter was designed to improve the metallurgical performance. A small-scale measurement of the jet behavior was done using a computer controlled scanning system. The experimental data on the velocity distribution at the jet centerline, the contour map of the jet velocity, the deviation of the jet centerline, and the velocity distribution of the axial section were compiled. According to the results of the small-scale measurement, the double-parameter lance was also employed for a BOF experiment. The metallurgy inde- xes show that the metallurgical performance was highly promoted by use of the double-parameter lance.
文摘A three-dimensional computational fluid dynamics (CFD) model was developed to simulate a 150-t top-blown converter. The ef-fect of different lance heights on the cavity shape was investigated using the volume of fluid (VOF) method. Numerical simulation results can reflect the actual molten bath surface waves impinged by the supersonic oxygen jets. With increasing lance height, the cavity depth de-creases, and the cavity area, varying like a parabola, increases and then decreases. The cavity area maximizes at the lance height of 1.3 m. Under the three different lance heights simulated in this study, all of the largest impact velocities at the molten bath surface are between 50 m/s and 100 m/s.