期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Boosting kinetic separation of ethylene and ethane on microporous materials via crystal size control
1
作者 Yixuan Ma Cong Yu +5 位作者 Lifeng Yang Rimin You Yawen Bo Qihan Gong Huabin Xing Xili Cui 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期85-91,共7页
The adsorptive separation of C_(2)H_(4)and C_(2)H_(6),as an alternative to distillation units consuming high energy,is a promising yet challenging research.The great similarity in the molecular size of C_(2)H_(4)and C... The adsorptive separation of C_(2)H_(4)and C_(2)H_(6),as an alternative to distillation units consuming high energy,is a promising yet challenging research.The great similarity in the molecular size of C_(2)H_(4)and C_(2)H_(6)brings challenges to the regulation of adsorbents to realize efficient dynamic separation.Herein,we reported the enhancement of the kinetic separation of C_(2)H_(4)/C_(2)H_(6)by controlling the crystal size of ZnAtzPO_(4)(Atz=3-amino-1,2,4-triazole)to amplify the diffusion difference of C_(2)H_(4)and C_(2)H_(6).Through adjusting the synthesis temperature,reactant concentration,and ligands/metal ions molar ratio,ZnAtzPO4 crystals with different sizes were obtained.Both single-component kinetic adsorption tests and binary-component dynamic breakthrough experiments confirmed the enhancement of the dynamic separation of C_(2)H_(4)/C_(2)H_(6)with the increase in the crystal size of ZnAtzPO_(4).The separation selectivity of C_(2)H_(4)/C_(2)H_(6)increased from 1.3 to 98.5 with the increase in the crystal size of ZnAtzPO_(4).This work demonstrated the role of morphology and size control of adsorbent crystals in the improvement of the C_(2)H_(4)/C_(2)H_(6)kinetic separation performance. 展开更多
关键词 ADSORPTION ADSORBENT ETHYLENE Binary mixture Crystal size control Kinetic separation
下载PDF
An Organic Solvent-Assisted Intercalation and Collection (OAIC) for Ti_(3)C_(2)T_(x) MXene with Controllable Sizes and Improved Yield 被引量:2
2
作者 Danyao Qu Yingying Jian +11 位作者 Lihao Guo Chen Su Ning Tang Xingmao Zhang Wenwen Hu Zheng Wang Zhenhuan Zhao Peng Zhong Peipei Li Tao Du Hossam Haick Weiwei Wu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第11期428-440,共13页
A good method of synthesizing Ti_(3)C_(2)T_(x)(MXene)is critical for ensuring its success in practical applications,e.g.,electromagnetic interference shielding,electrochemical energy storage,catalysis,sensors,and biom... A good method of synthesizing Ti_(3)C_(2)T_(x)(MXene)is critical for ensuring its success in practical applications,e.g.,electromagnetic interference shielding,electrochemical energy storage,catalysis,sensors,and biomedicine.The main concerns focus on the moderation of the approach,yield,and product quality.Herein,a modified approach,organic solvent-assisted intercalation and collection,was developed to prepare Ti_(3)C_(2)T_(x) flakes.The new approach simultaneously solves all the concerns,featuring a low requirement for facility(centrifugation speed<4000 rpm in whole process),gram-level preparation with remarkable yield(46.3%),a good electrical conductivity(8672 S cm^(−1)),an outstanding capacitive performance(352 F g^(−1)),and easy control over the dimension of Ti_(3)C_(2)T_(x) flakes(0.47–4.60μm^(2)).This approach not only gives a superb example for the synthesis of other MXene materials in laboratory,but sheds new light for the future mass production of Ti_(3)C_(2)T_(x) MXene. 展开更多
关键词 Two-dimensional materials MXenes controllable sizes High yield
下载PDF
Assembly of peptide nanostructures with controllable sizes
3
作者 Dan Cheng Fan Jia +2 位作者 Yun-Bao Jiang Vincent P.Conticello Tao Jiang 《Nano Research》 SCIE EI CSCD 2024年第1期151-161,共11页
Controlled peptide assembly offers significant promise to develop synthetic supramolecular nanostructures to display material and biological properties that mimic protein assemblies in nature.Despite the progress in f... Controlled peptide assembly offers significant promise to develop synthetic supramolecular nanostructures to display material and biological properties that mimic protein assemblies in nature.Despite the progress in forming peptide nanostructures of various morphology,there exists a distinct gap between natural and synthetic assembly systems in terms of size control.Constructing nanostructures with a narrow size distribution that can be tuned over a wide range of length-scales is essential for applications that require precise spacing between objects.This approach provides the opportunity to correlate materials and biological properties of interest with assembly size.In this review,we discuss representative endeavors over the past two decades for design of size-controllable peptide nanostructures using tunable building blocks.Other mechanisms for size control,e.g.,molecular frustration,template-directed peptide assembly,and multi-component peptide co-assembly,will also be discussed.We also demonstrate the applicable scopes of these strategies and suggest potential future avenues for scientific advances in this field. 展开更多
关键词 peptide assembly controllable size TEMPLATE MULTI-COMPONENT
原文传递
Optimized Runge-Kutta Methods with Automatic Step Size Control for Compressible Computational Fluid Dynamics
4
作者 Hendrik Ranocha Lisandro Dalcin +1 位作者 Matteo Parsani David I.Ketcheson 《Communications on Applied Mathematics and Computation》 2022年第4期1191-1228,共38页
We develop error-control based time integration algorithms for compressible fluid dynam-ics(CFD)applications and show that they are efficient and robust in both the accuracy-limited and stability-limited regime.Focusi... We develop error-control based time integration algorithms for compressible fluid dynam-ics(CFD)applications and show that they are efficient and robust in both the accuracy-limited and stability-limited regime.Focusing on discontinuous spectral element semidis-cretizations,we design new controllers for existing methods and for some new embedded Runge-Kutta pairs.We demonstrate the importance of choosing adequate controller parameters and provide a means to obtain these in practice.We compare a wide range of error-control-based methods,along with the common approach in which step size con-trol is based on the Courant-Friedrichs-Lewy(CFL)number.The optimized methods give improved performance and naturally adopt a step size close to the maximum stable CFL number at loose tolerances,while additionally providing control of the temporal error at tighter tolerances.The numerical examples include challenging industrial CFD applications. 展开更多
关键词 Explicit Runge-Kutta methods Step size control Compressible Euler equations Compressible Navier-Stokes equations hp-adaptive spatial discretizations
下载PDF
Control of Crystal Size and Morphology of Calcium Carbonate Crystal Polymorphism
5
作者 Wakana Nagaki Norihito Doki +3 位作者 Masaaki Yokota Kazuo Yamashita Toshiji Kojima Toshiyuki Tanaka 《Journal of Materials Science and Chemical Engineering》 2021年第4期38-45,共8页
Calcium carbonate, the main component of lime, has been widely used in industry due to its stability and economy. Calcium carbonate has three types of crystalline polymorphism, calcite, aragonite and vaterite, each wi... Calcium carbonate, the main component of lime, has been widely used in industry due to its stability and economy. Calcium carbonate has three types of crystalline polymorphism, calcite, aragonite and vaterite, each with different properties. Therefore, the control of crystal polymorphism is required for industrial applications. In addition, the control of crystal size and shape is similarly required for different applications. In this study, the effect of SrCO<sub>3</sub> on the size control of fine aragonite-type calcium carbonate crystals by uniform urea precipitation and the effect of SrCO<sub>3</sub> addition was investigated by adding solid strontium carbonate and dissolved strontium carbonate. The addition of solid strontium carbonate affected the crystal polymorphism and size of the calcium carbonate produced, depending on the properties of the solid particles and the amount of SrCO<sub>3</sub> added. Experiments on the addition of dissolved SrCO<sub>3</sub> showed that the supersaturation formation rate could be controlled to control the crystal polymorphism. 展开更多
关键词 CaCO3 ARAGONITE SrCO3 Crystal Polymorphism size Control
下载PDF
Au-Ag alloy nanoparticles with tunable cavity for plasmon-enhanced photocatalytic H2 evolution 被引量:4
6
作者 Xuanyu Yue Juan Hou +7 位作者 Haifeng Zhao Pengcheng Wu Yali Guo Qin Shi Long Chen Shanglong Peng Zhiyong Liu Guozhong Cao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第10期1-7,共7页
Au-Ag alloy nanoparticles with different cavity sizes have great potential for improving photocatalytic performance due to their tunable plasmon effect.In this study,galvanic replacement was combined with co-reduction... Au-Ag alloy nanoparticles with different cavity sizes have great potential for improving photocatalytic performance due to their tunable plasmon effect.In this study,galvanic replacement was combined with co-reduction with the reaction kinetics processes regulated to rapidly synthesize Au-Ag hollow alloy nanoparticles with tunable cavity sizes.The position of the localized surface plasmon resonance(LSPR)peak could be effectively adjusted between 490 nm and 713 nm by decreasing the cavity size of the Au-Ag hollow nanoparticles from 35 nm to 20 nm.The plasmon-enhanced photocatalytic H2 evolution of alloy nanoparticles with different cavity sizes was investigated.Compared with pure P25(TiO2),intact and thin-shelled Au-Ag hollow nanoparticles(HNPs)-supported photocatalyst exhibited an increase in the photocatalytic H2 evolution rate from 0.48μmol h^−1 to 4μmol h^−1 under full-spectrum irradiation.This improved photocatalytic performance was likely due to the plasmon-induced electromagnetic field effect,which caused strong photogenerated charge separation,rather than the generation of hot electrons. 展开更多
关键词 Au-Ag hollow alloy nanoparticles Galvanic displacement Controlled cavity sizes PHOTOCATALYSIS PLASMON
下载PDF
Facile synthesis of two-dimensional MoS_(2)/WS_(2) lateral heterostructures with controllable core/shell size ratio by a one-step chemical vapor deposition method 被引量:1
7
作者 Baofan Sun Jiajun Chen +6 位作者 Xinyi Zhou Min Liu Yaping Wu Yuanzheng Xia Xu Li Zhiming Wu Junyong Kang 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2021年第10期88-94,共7页
Heterostructures based on two-dimensional(2D) transition-metal dichalcogenides(TMDCs) possess unique electronic and optical properties, which open up unprecedented opportunities in nanoscale optoelectronic devices. Sy... Heterostructures based on two-dimensional(2D) transition-metal dichalcogenides(TMDCs) possess unique electronic and optical properties, which open up unprecedented opportunities in nanoscale optoelectronic devices. Synthesizing high-quality 2D TMDC heterostructures with different core/shell size ratios is of great significance for practical applications. Here, we report a simple one-step chemical vapor deposition(CVD) method for fabricating MoS2/WS2 lateral heterostructures with controllable core/shell size ratio. An ultrathin MoO3/WO3 film prepared by thermal evaporation was used as the precursor, and a step-like heating process was adopted to separately grow MoS2 and WS2 monolayers by taking advantage of the different melting points of MoO3 and WO3 sources. High-quality MoS2/WS2 lateral heterostructures with sharp interfaces were fabricated by optimizing the key growth parameters. Furthermore, the core/shell size ratio of heterostructures could be easily controlled by changing the thickness ratio of MoO3/WO3 film, and an approximately linear dependence between them is revealed. Compared with MoS2 or WS2 monolayers, the MoS2/WS2 heterostructure exhibited a shortened exciton lifetime owing to the type-Ⅱ energy band alignment, which is conducive to the application of high-performance devices. This work provides a facile strategy for the synthesis of 2D lateral heterostructures with controllable size ratio. 展开更多
关键词 lateral heterostructures controllable size ratio chemical vapor deposition thermal evaporation one-step growth
原文传递
Large-scale controllable fabrication of aluminum nanobowls for surface plasmon-enhanced fluorescence
8
作者 Yawen Wang Heng Gao +5 位作者 Yuanlan Liu Dong Li Bo Zhao Wenkai Liang Yinghui Sun Lin Jiang 《Nano Research》 SCIE EI CSCD 2023年第7期10131-10138,共8页
Al nanoparticles(NPs)exhibit excellent localized surface plasmon resonance(LSPR)properties and have been considered a promising alternative to plasmonic Au or Ag NPs.However,it remains difficult to fabricate Al NPs wi... Al nanoparticles(NPs)exhibit excellent localized surface plasmon resonance(LSPR)properties and have been considered a promising alternative to plasmonic Au or Ag NPs.However,it remains difficult to fabricate Al NPs with uniform size and controllable morphology over a large area on substrates,which seriously hinders the in-depth exploration of their properties and applications.Herein,we have developed a self-assembly nanoparticle template method to realize the controllable preparation of bowl-shaped Al NPs(Al nanobowls(Al NBs))with tunable sizes from 36 to 131 nm on the substrate surface,accompanied by tunable LSPR spectral responses from 272 to 480 nm.Among them,131 nm Al NBs exhibit superior fluorescence enhancement ability(1932.2-fold)and a low detection limit(78.6 pM)towards 5-carboxyfluorescein,exceeding comparable Ag NBs and Au nanospheres(NSs).This can be attributed to the strong electromagnetic enhancement induced by the LSPR effect and the effective inhibition of fluorescence quenching caused by the self-passivated oxide layer.Therefore,the successful fabrication of Al NBs on substrates is of vital significance for their promising applications,including surface-enhanced spectroscopy,sensitive fluorescence detection,light-harvesting devices,biosensing,and ultraviolet(UV)plasmonics. 展开更多
关键词 Al nanoparticles controllable size localized surface plasmon resonance(LSPR) large-area fabrication fluorescence enhancement
原文传递
Growth suppressor lingerer regulates bantam microRNA to restrict organ size
9
作者 Liang Dong Jinhui Li +8 位作者 Hongling Huang Meng-Xin Yin Jinjin Xu Peixue Li Yi Lu Wenqing Wu Hang Yang Yun Zhao Lei Zhang 《Journal of Molecular Cell Biology》 SCIE CAS CSCD 2015年第5期415-428,共14页
The evolutionarily conserved Hippo signaling pathway plays an important role in organ size control by regulating cell proliferation and apoptosis.Here,we identify Lingerer(Lig)as a growth suppressor using RNAi modifyi... The evolutionarily conserved Hippo signaling pathway plays an important role in organ size control by regulating cell proliferation and apoptosis.Here,we identify Lingerer(Lig)as a growth suppressor using RNAi modifying screen in Drosophila melanogaster.Loss of lig increases organ size and upregulates bantam(ban)and the expression of the Hippo pathway target genes,while overexpression of lig results in diminished ban expression and organ size reduction.We demonstrate that Lig C-terminal exhibits dominant-negative function on growth and ban expression,and thus plays an important role in organ size control and ban regulation.In addition,we provide evidence that both Yki and Mad are essential for Lig-induced ban expression.We also show that Lig regulates the expression of the Hippo pathway target genes partially via Yorkie.Moreover,we find that Lig physically interacts with and requires Salvador to restrict cell growth.Taken together,we demonstrate that Lig functions as a critical growth suppressor to control organ size via ban and Hippo signaling. 展开更多
关键词 lingerer HIPPO SALVADOR Yorkie MAD organ size control bantam
原文传递
Balanced biosynthesis and trigger threshold resulting in a double adder mechanism of cell size control
10
作者 Leilei Li 《Communications in Theoretical Physics》 SCIE CAS CSCD 2021年第8期146-159,共14页
How cells accomplish cell size homeostasis is a fascinating topic, and several cell size regulation mechanisms were proposed: timer, sizer, and adder. Recently the adder model has received a great deal of attention. A... How cells accomplish cell size homeostasis is a fascinating topic, and several cell size regulation mechanisms were proposed: timer, sizer, and adder. Recently the adder model has received a great deal of attention. Adder property was also found in the DNA replication cycle. This paper aims to explain the adder phenomenon both in the division-centric picture and replication-centric picture at the molecular level. We established a self-replication model, and the system reached a steady state quickly based on evolution rules. We collected tens of thousands of cells in the same trajectory and calculated the Pearson correlation coefficient between biological variables to decide which regulatory mechanism was adopted by cells. Our simulation results confirmed the double-adder mechanism. Chromosome replication initiation and cell division control are independent and regulated by respective proteins.Cell size homeostasis originates from division control and has nothing to do with replication initiation control. At a slow growth rate, the deviation from adder toward sizer comes from a significant division protein degradation rate when division protein is auto-inhibited. Our results indicated the two necessary conditions in the double-adder mechanism: one is balanced biosynthesis, and the other is that there is a protein trigger threshold to inspire DNA replication initiation and cell division. Our results give insight to the regulatory mechanism of cell size and instructive to synthetic biology. 展开更多
关键词 cell size control cell size homeostasis cell cycle growth law double adder critical initiation size single cell
原文传递
Patterning two-dimensional semiconductors with thermal etching
11
作者 Miaomiao Liu Ziwei Huang +11 位作者 Yukun Guo Zhengwei Zhang Liqiang Zhang Hongmei Zhang Jiang Zhong Shanhao Li Wei Deng Di Wang Wei Li Ying Huangfu Xiangdong Yang Xidong Duan 《InfoMat》 SCIE 2023年第11期64-77,共14页
The controllable synthesis of complicated nanostructures in advanced two-dimensional(2D)semiconductors,such as periodic regular hole arrays,is essential and remains immature.Here,we report a green,facile,highly contro... The controllable synthesis of complicated nanostructures in advanced two-dimensional(2D)semiconductors,such as periodic regular hole arrays,is essential and remains immature.Here,we report a green,facile,highly controlled synthetic method to efficiently pattern 2D semiconductors,such as periodic regular hexagonal-shaped hole arrays(HHA),in 2D-TMDs.Combining the production of artificial defect arrays through laser irradiation with anisotropic annealing etching,we created HHA with different arrangements,controlled hole sizes,and densities in bilayer WS_(2).Atomic force microscopy(AFM),Raman,photoluminescence(PL),and scanning transmission electron microscopy(STEM)characterization show that the 2D semiconductors have high quality with atomical clean and sharp edges as well as undamaged crystals in the unetched region.Furthermore,other nanostructures,such as nanoribbons and periodic regular triangular-shaped 2D-TMD arrays,can be fabricated.This kind of 2D semiconductors fabrication strategy is general and can be extended to a series of 2D materials.Density functional theory(DFT)calculations show that one WS_(2)molecule from the edges of the laser-irradiated holed region exhibits a robust etching activation,making selective etching at the artificial defects and the fabrication of regular 2D semiconductors possible. 展开更多
关键词 2D transition-metal dichalcogenide materials atomically zigzag edges controlled size defect-induced thermal etching etching mechanism hexagonal-shaped hole array
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部