In the western and central Pacific Ocean,upper strata waters exhibit highly dynamic oceanographic features under ENSO variability.This has been proved to be responsible for the dynamic change of both abundance and zon...In the western and central Pacific Ocean,upper strata waters exhibit highly dynamic oceanographic features under ENSO variability.This has been proved to be responsible for the dynamic change of both abundance and zonal distribution of skipjack tuna(Katsuwonus pelamis).Although causality has been suggested by researchers using physical-biological interaction models,cumulative evidence needs to be obtained and the tenability of assertion needs to be tested from an ecological habitat perspective,based on fisheries data.For purse seine fishery,the use of catch per unit effort(CPUE)as an indication of the abundance is confusing because of technical improvements over the whole exploitation history and unbalanced individual fishing characteristic of vessels.It is particularly interesting to discriminate between habitat characteristics in comparative scenarios of CPUE application.This study identified habitat traits based on a series of oceanographic factors from a global ocean reanalysis model.A comparison was conducted between two habitat models based on unprocessed purse seine CPUE and standardized CPUE considering fishing characteristics.The results suggest that standardized CPUE could model the regular zonal shift of habitat compatible with the observed fishing efforts transfer,and achieved better prediction capacity than unprocessed CPUE.Furthermore,the habitat of skipjack tuna was also characterized and linked with surface and subsurface thermal environment,ocean current,dissolved oxygen,biotic environment,and ENSO variability.The monthly-averaged habitat suitable index,derived from the optimal habitat model prediction,showed a significant linear relationship with the southern oscillation index,which suggested that El Ni?o episodes eventually provide more preferable habitat for skipjack tuna under ENSO variability.展开更多
Potential fishing zones for skipjack tuna in the Bone Bay-Flores Sea were investigated from satellite-based oceanography and catch data, using a linear model (generalized linear model) constructed from generalized add...Potential fishing zones for skipjack tuna in the Bone Bay-Flores Sea were investigated from satellite-based oceanography and catch data, using a linear model (generalized linear model) constructed from generalized additive models and geographic information systems. Monthly mean remotely sensed sea surface temperature and surface chlorophyll-a concentration during the southeast monsoon (April-August) were used for the year 2012. The best generalized additive model was selected to assess the effect of marine environment variables (sea surface temperature and chlorophyll-a concentration) on skipjack tuna abundance (catch per unit effort). Then, the appropriate linear model was constructed from the functional relationship of the generalized additive model for generating a robust predictive model. Model selection process for the generalized additive model was based on significance of model terms, decrease in residual deviance, and increase in cumulative variance explained, whereas the model selection for the linear model was based on decrease in residual deviance, reduction in Akaike’s Information Criterion, increasing cumulative variance explained and significance of model terms. The best model was selected to predict skipjack tuna abundance and their spatial distribution patterns over entire study area. A simple linear model was used to verify the predicted values. Results indicated that the distribution pattern of potential fishing zones for skipjack during the southeast monsoon were well characterized by sea surface temperatures ranging from 28.5℃ to 30.5 ℃ and chlorophyll-a ranging from 0.10 to 0.20 mg·m-3. Predicted highest catch per unit efforts were significantly consistent with the fishing data (P 2 = 0.8), suggesting that the oceanographic indicators may correspond well with the potential feeding ground for skipjack tuna. This good feeding opportunity for skipjack was driven the dynamics of upwelling operating within study area which are capable of creating a highly potential fishing zone during the southeast monsoon.展开更多
Acid-soluble collagen(ASC) and pepsin-soluble collagen(PSC) from the spine(ASC-SP and PSC-SP) and skull(ASC-SK and PSC-SK) of the skipjack tuna, Katsuwonus pelamis, were successfully isolated and characterized. The yi...Acid-soluble collagen(ASC) and pepsin-soluble collagen(PSC) from the spine(ASC-SP and PSC-SP) and skull(ASC-SK and PSC-SK) of the skipjack tuna, Katsuwonus pelamis, were successfully isolated and characterized. The yields of ASC-SP, PSC-SP, ASC-SK and PSC-SK were(2.47 ± 0.39)%,(5.62 ± 0.82)%,(3.57 ± 0.40)%, and(6.71 ± 0.81)%, respectively, on the basis of dry weight. The four collagens contained Gly(330.2-339.1 residues/1 000 residues) as the major amino acid, and their imino acid contents were between 168.8 and 178.2 residues/1 000 residues. Amino acid composition, SDS-PAGE, and FTIR investigations confirmed that ASC-SP and ASC-SK were mainly composed of type I collagen, and had higher contents of high-molecular weight cross-links than those of PSC-SK and PSC-SP. The FTIR investigation also certified all the collagens had triple helical structure. The denaturation temperatures of ASC-SK, PSC-SK, ASC-SP, and PSC-SP were 17.8, 16.6, 17.6, and 16.5 °C, respectively. All isolated collagens were soluble at acidic pH(1-5) and lost their solubilities when the NaCl concentration was above 2%(W/V). The isolated collagens from the spines and skulls of skipjack tuna could serve as an alternative source of collagens for further application in food, cosmetic, biomedical, and pharmaceutical industries.展开更多
【目的】探究中西太平洋围网鲣鱼渔场时空分布及其与海洋环境因子之间的关系。【方法】根据2017―2021年上海开创远洋渔业有限公司“金汇58轮”中西太平洋鲣鱼(Katsuwonus pelamis)围网生产统计的数据及遥感获取的海表面温度、叶绿素a...【目的】探究中西太平洋围网鲣鱼渔场时空分布及其与海洋环境因子之间的关系。【方法】根据2017―2021年上海开创远洋渔业有限公司“金汇58轮”中西太平洋鲣鱼(Katsuwonus pelamis)围网生产统计的数据及遥感获取的海表面温度、叶绿素a浓度和海表面高度等环境数据,应用广义相加模型(GAM)对鲣鱼单位捕捞努力量渔获量(Catch per unit of fishing effort,CPUE)进行标准化处理,并逐步回归分析CPUE与各因子的差异显著性,利用软件Arcgis10.7对标准化后鲣鱼CPUE进行空间因子和环境因子的叠加分析。【结果】经度和环境因子(海表面温度、叶绿素a浓度和海表面高度)对鲣鱼CPUE均有显著影响(P<0.05),叶绿素a浓度和海表面温度表现为极显著影响(P<0.01),海表面温度对CPUE的影响最显著,其次为叶绿素a浓度、经度、海表面高度;2017―2021年,中西太平洋鲣鱼年均CPUE最大值(46.59 t/网)出现在2018和2020年,月均最大值(51.79 t/网)出现在2月,作业渔场主要分布在5.0°S―5.0°N、165.0°E―180.0°E;鲣鱼平均CPUE较大值(>42.25 t/网)出现在5.5°―4.5°S,166.5°―168.5°E;1.5°―0.5°S,166.5°―173.5°E;1.5°―0.5°S,173.5°―169.5°W四点连成的海域内。【结论】鲣鱼渔场最适海表面温度为29.25~30.25℃,最适叶绿素a质量浓度为0.138~0.171 mg/m3,最适海表面高度为65.00~75.60 cm。展开更多
为探索流化冰对冰鲜水产品保鲜效果,以鲣鱼鱼肉为研究对象,以传统碎块冰保鲜为对照,探讨流化冰处理对鲣鱼肌肉蛋白质功能特性影响。结果表明:1)流化冰冰粒子呈球形,外表光滑、单位表面积大且流动性能好,8 min内可将鱼肉整体温度由35℃...为探索流化冰对冰鲜水产品保鲜效果,以鲣鱼鱼肉为研究对象,以传统碎块冰保鲜为对照,探讨流化冰处理对鲣鱼肌肉蛋白质功能特性影响。结果表明:1)流化冰冰粒子呈球形,外表光滑、单位表面积大且流动性能好,8 min内可将鱼肉整体温度由35℃降低至1.3℃;2)-4℃贮藏18 d后,流化冰保鲜处理的鱼肉弹性和咀嚼性依次为1.19 mm和5.50 m J,而空白(不加冰)、淡水碎块冰组分别为0.67 mm和1.65 m J、0.95 mm和3.32 m J,可见流化冰对鱼肉质构特性保持效果显著(P<0.05);3)0~18 d贮藏期内,不同处理鲣鱼肌原纤维蛋白含量、Ca2+-ATPase活性及总巯基含量均呈逐渐下降趋势,其中以流化冰处理对鲣鱼蛋白质功能特性的保持效果最佳;此外,流化冰保鲜还兼具有抑制鱼肉氧合肌红蛋白自动氧化、维持肌肉原有色泽的作用。流化冰处理显著保持了鲣鱼肌肉组织的质构和相关蛋白质功能特性,可满足冰鲜水产品远洋、长距离运输和保鲜贮藏要求。展开更多
应用文献计量学的原理与方法,以Web of Science和ASFA数据库获得的168篇涉及鲣鱼资源渔场的文献为研究对象,对世界鲣鱼资源渔场研究领域的研究成果进行回顾和总结。分析认为,鲣鱼资源开发可分为3个阶段:小规模开发初级阶段(1950-1970年)...应用文献计量学的原理与方法,以Web of Science和ASFA数据库获得的168篇涉及鲣鱼资源渔场的文献为研究对象,对世界鲣鱼资源渔场研究领域的研究成果进行回顾和总结。分析认为,鲣鱼资源开发可分为3个阶段:小规模开发初级阶段(1950-1970年),大规模开发发展阶段(1970-1990年),和可持续开发阶段(1990-2015年)。目前世界上65%的鲣鱼捕获量来自于西太平洋海域。1950年以来,国内外对鲣鱼资源渔场的研究发展迅速,其研究成果不仅发表于海洋类主流期刊,一些国际顶尖期刊也对其研究给予了较多关注,许多渔业国和地区均参与了有关鲣鱼资源渔场的研究工作。通过对文献内容分析,发现在过去60多年间,鲣鱼资源量基本保持稳定,但鲣鱼渔场的时空分布由于受海洋环境因子的影响较大,发生了较大变化。目前对鲣鱼研究多集中在鲣鱼的资源评估和资源渔场与环境变化关系这两个方面,在今后研究中应结合社会经济等,加强资源评估与管理的研究,为鲣鱼资源可持续利用和科学管理提供参考。展开更多
基金The National Key R&D Program of China under contract Nos 2020YFD0901202 and 2019YFD0901502the National Natural Science Foundation of China under contract Nos 41806110,41506151 and 31902426。
文摘In the western and central Pacific Ocean,upper strata waters exhibit highly dynamic oceanographic features under ENSO variability.This has been proved to be responsible for the dynamic change of both abundance and zonal distribution of skipjack tuna(Katsuwonus pelamis).Although causality has been suggested by researchers using physical-biological interaction models,cumulative evidence needs to be obtained and the tenability of assertion needs to be tested from an ecological habitat perspective,based on fisheries data.For purse seine fishery,the use of catch per unit effort(CPUE)as an indication of the abundance is confusing because of technical improvements over the whole exploitation history and unbalanced individual fishing characteristic of vessels.It is particularly interesting to discriminate between habitat characteristics in comparative scenarios of CPUE application.This study identified habitat traits based on a series of oceanographic factors from a global ocean reanalysis model.A comparison was conducted between two habitat models based on unprocessed purse seine CPUE and standardized CPUE considering fishing characteristics.The results suggest that standardized CPUE could model the regular zonal shift of habitat compatible with the observed fishing efforts transfer,and achieved better prediction capacity than unprocessed CPUE.Furthermore,the habitat of skipjack tuna was also characterized and linked with surface and subsurface thermal environment,ocean current,dissolved oxygen,biotic environment,and ENSO variability.The monthly-averaged habitat suitable index,derived from the optimal habitat model prediction,showed a significant linear relationship with the southern oscillation index,which suggested that El Ni?o episodes eventually provide more preferable habitat for skipjack tuna under ENSO variability.
文摘Potential fishing zones for skipjack tuna in the Bone Bay-Flores Sea were investigated from satellite-based oceanography and catch data, using a linear model (generalized linear model) constructed from generalized additive models and geographic information systems. Monthly mean remotely sensed sea surface temperature and surface chlorophyll-a concentration during the southeast monsoon (April-August) were used for the year 2012. The best generalized additive model was selected to assess the effect of marine environment variables (sea surface temperature and chlorophyll-a concentration) on skipjack tuna abundance (catch per unit effort). Then, the appropriate linear model was constructed from the functional relationship of the generalized additive model for generating a robust predictive model. Model selection process for the generalized additive model was based on significance of model terms, decrease in residual deviance, and increase in cumulative variance explained, whereas the model selection for the linear model was based on decrease in residual deviance, reduction in Akaike’s Information Criterion, increasing cumulative variance explained and significance of model terms. The best model was selected to predict skipjack tuna abundance and their spatial distribution patterns over entire study area. A simple linear model was used to verify the predicted values. Results indicated that the distribution pattern of potential fishing zones for skipjack during the southeast monsoon were well characterized by sea surface temperatures ranging from 28.5℃ to 30.5 ℃ and chlorophyll-a ranging from 0.10 to 0.20 mg·m-3. Predicted highest catch per unit efforts were significantly consistent with the fishing data (P 2 = 0.8), suggesting that the oceanographic indicators may correspond well with the potential feeding ground for skipjack tuna. This good feeding opportunity for skipjack was driven the dynamics of upwelling operating within study area which are capable of creating a highly potential fishing zone during the southeast monsoon.
基金supported by the National Natural Science Foundation of China(No.31001109)the Public Projects of Zhejiang Province(No.2014C33034)the Special Program for the Science and Technology Plan of Zhejiang Province(Nos.2009C03017-2,2011C02003)
文摘Acid-soluble collagen(ASC) and pepsin-soluble collagen(PSC) from the spine(ASC-SP and PSC-SP) and skull(ASC-SK and PSC-SK) of the skipjack tuna, Katsuwonus pelamis, were successfully isolated and characterized. The yields of ASC-SP, PSC-SP, ASC-SK and PSC-SK were(2.47 ± 0.39)%,(5.62 ± 0.82)%,(3.57 ± 0.40)%, and(6.71 ± 0.81)%, respectively, on the basis of dry weight. The four collagens contained Gly(330.2-339.1 residues/1 000 residues) as the major amino acid, and their imino acid contents were between 168.8 and 178.2 residues/1 000 residues. Amino acid composition, SDS-PAGE, and FTIR investigations confirmed that ASC-SP and ASC-SK were mainly composed of type I collagen, and had higher contents of high-molecular weight cross-links than those of PSC-SK and PSC-SP. The FTIR investigation also certified all the collagens had triple helical structure. The denaturation temperatures of ASC-SK, PSC-SK, ASC-SP, and PSC-SP were 17.8, 16.6, 17.6, and 16.5 °C, respectively. All isolated collagens were soluble at acidic pH(1-5) and lost their solubilities when the NaCl concentration was above 2%(W/V). The isolated collagens from the spines and skulls of skipjack tuna could serve as an alternative source of collagens for further application in food, cosmetic, biomedical, and pharmaceutical industries.
文摘【目的】探究中西太平洋围网鲣鱼渔场时空分布及其与海洋环境因子之间的关系。【方法】根据2017―2021年上海开创远洋渔业有限公司“金汇58轮”中西太平洋鲣鱼(Katsuwonus pelamis)围网生产统计的数据及遥感获取的海表面温度、叶绿素a浓度和海表面高度等环境数据,应用广义相加模型(GAM)对鲣鱼单位捕捞努力量渔获量(Catch per unit of fishing effort,CPUE)进行标准化处理,并逐步回归分析CPUE与各因子的差异显著性,利用软件Arcgis10.7对标准化后鲣鱼CPUE进行空间因子和环境因子的叠加分析。【结果】经度和环境因子(海表面温度、叶绿素a浓度和海表面高度)对鲣鱼CPUE均有显著影响(P<0.05),叶绿素a浓度和海表面温度表现为极显著影响(P<0.01),海表面温度对CPUE的影响最显著,其次为叶绿素a浓度、经度、海表面高度;2017―2021年,中西太平洋鲣鱼年均CPUE最大值(46.59 t/网)出现在2018和2020年,月均最大值(51.79 t/网)出现在2月,作业渔场主要分布在5.0°S―5.0°N、165.0°E―180.0°E;鲣鱼平均CPUE较大值(>42.25 t/网)出现在5.5°―4.5°S,166.5°―168.5°E;1.5°―0.5°S,166.5°―173.5°E;1.5°―0.5°S,173.5°―169.5°W四点连成的海域内。【结论】鲣鱼渔场最适海表面温度为29.25~30.25℃,最适叶绿素a质量浓度为0.138~0.171 mg/m3,最适海表面高度为65.00~75.60 cm。
文摘为探索流化冰对冰鲜水产品保鲜效果,以鲣鱼鱼肉为研究对象,以传统碎块冰保鲜为对照,探讨流化冰处理对鲣鱼肌肉蛋白质功能特性影响。结果表明:1)流化冰冰粒子呈球形,外表光滑、单位表面积大且流动性能好,8 min内可将鱼肉整体温度由35℃降低至1.3℃;2)-4℃贮藏18 d后,流化冰保鲜处理的鱼肉弹性和咀嚼性依次为1.19 mm和5.50 m J,而空白(不加冰)、淡水碎块冰组分别为0.67 mm和1.65 m J、0.95 mm和3.32 m J,可见流化冰对鱼肉质构特性保持效果显著(P<0.05);3)0~18 d贮藏期内,不同处理鲣鱼肌原纤维蛋白含量、Ca2+-ATPase活性及总巯基含量均呈逐渐下降趋势,其中以流化冰处理对鲣鱼蛋白质功能特性的保持效果最佳;此外,流化冰保鲜还兼具有抑制鱼肉氧合肌红蛋白自动氧化、维持肌肉原有色泽的作用。流化冰处理显著保持了鲣鱼肌肉组织的质构和相关蛋白质功能特性,可满足冰鲜水产品远洋、长距离运输和保鲜贮藏要求。
文摘应用文献计量学的原理与方法,以Web of Science和ASFA数据库获得的168篇涉及鲣鱼资源渔场的文献为研究对象,对世界鲣鱼资源渔场研究领域的研究成果进行回顾和总结。分析认为,鲣鱼资源开发可分为3个阶段:小规模开发初级阶段(1950-1970年),大规模开发发展阶段(1970-1990年),和可持续开发阶段(1990-2015年)。目前世界上65%的鲣鱼捕获量来自于西太平洋海域。1950年以来,国内外对鲣鱼资源渔场的研究发展迅速,其研究成果不仅发表于海洋类主流期刊,一些国际顶尖期刊也对其研究给予了较多关注,许多渔业国和地区均参与了有关鲣鱼资源渔场的研究工作。通过对文献内容分析,发现在过去60多年间,鲣鱼资源量基本保持稳定,但鲣鱼渔场的时空分布由于受海洋环境因子的影响较大,发生了较大变化。目前对鲣鱼研究多集中在鲣鱼的资源评估和资源渔场与环境变化关系这两个方面,在今后研究中应结合社会经济等,加强资源评估与管理的研究,为鲣鱼资源可持续利用和科学管理提供参考。