期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Analytical solution for slope instability assessment considering impact of confined aquifer 被引量:3
1
作者 冉启华 钱群 +2 位作者 王光谦 傅旭东 苏丹阳 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第4期1502-1509,共8页
An analytical approach was presented for estimating the factor of safety(FS) for slope failure, with consideration of the impact of a confined aquifer. An upward-moving wetting front from the confined water was assume... An analytical approach was presented for estimating the factor of safety(FS) for slope failure, with consideration of the impact of a confined aquifer. An upward-moving wetting front from the confined water was assumed and the pore water pressure distribution was then estimated and used to obtain the analytical expression of FS. Then, the validation of the theoretical analysis was applied based on an actual case in Hong Kong. It is shown that the presence of a confined aquifer leads to a lower FS value, and the impact rate of hydrostatic pressure on FS increases as the confined water pressure increases, approaching to a maximum value determined by the ratio of water density to saturated soil density. It is also presented that the contribution of hydrostatic pressure and hydrodynamic pressure to the slope stability vary with the confined aquifer pressure. 展开更多
关键词 confined/artesian groundwater slope stability factor of safety analytical approach
下载PDF
Slope Stability Considering the Top Building Load
2
作者 Micke Didit Xiwen Zhang Weidong Zhu 《Open Journal of Civil Engineering》 CAS 2022年第3期292-300,共9页
Slope stability is one of the most important subjects of geotechnics. The slope top-loading plays a key role in the stability of slopes in hill slope areas. When the building load is too large or the point of action f... Slope stability is one of the most important subjects of geotechnics. The slope top-loading plays a key role in the stability of slopes in hill slope areas. When the building load is too large or the point of action from the shoulder is too close, the shear stress of the slope will be significantly greater than its shear strength, resulting in reduced slope stability. Therefore, it is of great importance to study the relationship between the building load and the stability of the slope. This study aims to analyze the influence of different building loads applied at different distances on the top of the slope and deduces their effects on the slope stability. For this purpose, a three-dimensional slope model under different building loads with different distances to the slope shoulder was established using the finite-difference analysis software Flac3D. The results show that the loads applied at different distances on the top of the slope have different effects on the slope stability. The slope factor of safety (FOS) increases with the increase of the distance between the top-loading and the slope shoulder;it varies from 1.37 to 1.53 for the load P = 120 KPa, 1.27 to 1.53 for the load P = 200 KPa, and from 1.18 to 1.44 for P = 300 KPa, resulting in the decrease of the coincidence area between the load-deformation and the potential sliding surface. The slope is no longer affected by the potential risk of sliding at approximately 20 m away from the slope shoulder. 展开更多
关键词 Building Load Finite-Difference Analysis FLAC3D Software slope factor of safety slope Stability
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部