A new method for determining the partial melting depth of mantle-derived magma and lithospheric thickness in continental regions is derived from REE geochemistry. This effective technique uses variations in the Ce/Yb ...A new method for determining the partial melting depth of mantle-derived magma and lithospheric thickness in continental regions is derived from REE geochemistry. This effective technique uses variations in the Ce/Yb and Sm/Yb ratios found in mainly volcanic rocks in continental China. The ratios change with the depth of origin consistent with the correlation between lithospheric thickness and the Ce/Yb and Sm/Yb ratios found in oceanic basalt. These ratios increase exponentially with the depth of origin, the lithospheric thickness, of a wide variety of Cenozoic volcanic basalt and Paleozoic kimberlite in the North China Craton, northeastern China continent and vicinity. This functional relationship with depth is shown in a plot of the ratios that forms a concordia curve, which is closely expressed by formulas using 8–degree polynomials. These provide a more accurate gage in measuring the lithospheric thickness than the traditional geophysical methods. When applied to volcanic rock of different ages it also reveals how the thickness has changed over time and thus, greatly aids the understanding of the tectonic history. Relations between the COcontent, mineral reactions and pressure in the upper asthenosphere beneath the base of the lithosphere appears to affect the proportions of REE in partial melts and brings about a close correlation between lithospheric thickness and the Ce/Yb and Sm/Yb ratios in mantle–derived magmatic rock. This thickness gauge, for both continental and oceanic lithosphere, provides a new approach in analyzing the lithospheric thickness in different tectonic settings and geologic times.展开更多
The heat capacities of four RE isothiocyanate hydrates,Sm( NCS)3 6H2O,Gd( NCS)3 6H2O,Yb(NCS)3 6H2O and Y( NCS)3 6H2O,have been measured from 13 to 300 K with a fully-automated adiabatic calorimeter No obvious thermal ...The heat capacities of four RE isothiocyanate hydrates,Sm( NCS)3 6H2O,Gd( NCS)3 6H2O,Yb(NCS)3 6H2O and Y( NCS)3 6H2O,have been measured from 13 to 300 K with a fully-automated adiabatic calorimeter No obvious thermal anomaly was observed for the above-mentioned compounds in the experimental tem-peiatnre ranges.The polynomial equations for calculating the heat capacities of the four compounds in the range of 13-300K were obtained by the least-squares fitting based on the experimental Cp data.The Cp values below 13 K were estimated by using the Debye-Einstem heat capacity functions.The standard molar thermodynamic functions were calculated from 0 to 300 K.Gibbs energies of formation were also calculated.展开更多
基金supported by the Ministry of Land and Resources of China under grant No.201211095
文摘A new method for determining the partial melting depth of mantle-derived magma and lithospheric thickness in continental regions is derived from REE geochemistry. This effective technique uses variations in the Ce/Yb and Sm/Yb ratios found in mainly volcanic rocks in continental China. The ratios change with the depth of origin consistent with the correlation between lithospheric thickness and the Ce/Yb and Sm/Yb ratios found in oceanic basalt. These ratios increase exponentially with the depth of origin, the lithospheric thickness, of a wide variety of Cenozoic volcanic basalt and Paleozoic kimberlite in the North China Craton, northeastern China continent and vicinity. This functional relationship with depth is shown in a plot of the ratios that forms a concordia curve, which is closely expressed by formulas using 8–degree polynomials. These provide a more accurate gage in measuring the lithospheric thickness than the traditional geophysical methods. When applied to volcanic rock of different ages it also reveals how the thickness has changed over time and thus, greatly aids the understanding of the tectonic history. Relations between the COcontent, mineral reactions and pressure in the upper asthenosphere beneath the base of the lithosphere appears to affect the proportions of REE in partial melts and brings about a close correlation between lithospheric thickness and the Ce/Yb and Sm/Yb ratios in mantle–derived magmatic rock. This thickness gauge, for both continental and oceanic lithosphere, provides a new approach in analyzing the lithospheric thickness in different tectonic settings and geologic times.
基金Project supported by the National Natural Science Foundation of China
文摘The heat capacities of four RE isothiocyanate hydrates,Sm( NCS)3 6H2O,Gd( NCS)3 6H2O,Yb(NCS)3 6H2O and Y( NCS)3 6H2O,have been measured from 13 to 300 K with a fully-automated adiabatic calorimeter No obvious thermal anomaly was observed for the above-mentioned compounds in the experimental tem-peiatnre ranges.The polynomial equations for calculating the heat capacities of the four compounds in the range of 13-300K were obtained by the least-squares fitting based on the experimental Cp data.The Cp values below 13 K were estimated by using the Debye-Einstem heat capacity functions.The standard molar thermodynamic functions were calculated from 0 to 300 K.Gibbs energies of formation were also calculated.