A tilt-rotor aircraft has three flight modes: helicopter mode, airplane mode and conversion mode. Unlike the traditional aircraft, the tilt-rotor aircraft, which combines the characteristics of helicopters and fixed-w...A tilt-rotor aircraft has three flight modes: helicopter mode, airplane mode and conversion mode. Unlike the traditional aircraft, the tilt-rotor aircraft, which combines the characteristics of helicopters and fixed-wing aircraft, is a complex multi-body system with the violent variation of the aerodynamic parameters. For these characteristics, a new smooth switching control scheme is provided for the tilt-rotor aircraft. First, the reference commands for airspeed and nacelle angles are calculated by analyzing the conversion corridor and the conversion path. Subsequently, based on the finite-time switching theorem, an average dwell time condition is designed to guarantee the stability in the switching process. Besides, considering the state vibrations and bumps may appear in switching points, the fuzzy weighted logic is employed to improve the system transient performance. For disturbance rejection, three extended state observers are designed separately to estimate the disturbances in the switched systems. Compared with the traditional auto disturbance rejection control and proportion integration differentiation control, this method overcomes the conservatism of wasting the whole model information. The control performances of robustness and smoothness are verified with simulation, which shows that the new smooth switching control scheme is more targeted and superior than the traditional design method.展开更多
This paper is concerned with a systematic method of smooth switching linear parameter- varying (LPV) controllers design for a morphing aircraft with a variable wing sweep angle. The morphing aircraft is modeled as a...This paper is concerned with a systematic method of smooth switching linear parameter- varying (LPV) controllers design for a morphing aircraft with a variable wing sweep angle. The morphing aircraft is modeled as an LPV system, whose scheduling parameter is the variation rate of the wing sweep angle. By dividing the scheduling parameter set into subsets with overlaps, output feedback controllers which consider smooth switching are designed and the controllers in over- lapped subsets are interpolated from two adjacent subsets. A switching law without constraint on the average dwell time is obtained which makes the conclusion less conservative. Furthermore, a systematic algorithm is developed to improve the efficiency of the controllers design process. The parameter set is divided into the fewest subsets on the premise that the closed-loop system has a desired performance. Simulation results demonstrate the effectiveness of this approach.展开更多
The sliding mode controller of mobile welding robot is established in this paper through applying the method of variable structure control with sliding mode into the control of the mobile welding robot. The traditiona...The sliding mode controller of mobile welding robot is established in this paper through applying the method of variable structure control with sliding mode into the control of the mobile welding robot. The traditional switching function smooth method is improved by combining the smoothed switching function with the time-varying control gain. It is shown that the proposed sliding mode controller is robust to bounded external disturbances. Experimental results demonstrate that sliding mode controller algorithm can be used into seam tracking and the tracking system is stable with bounded uncertain disturbance. In the seam tracking process, the robot moves steadily without any obvious chattering.展开更多
The aircraft engine multi-loop control system is described and the switching control theory is introduced to solve the regulating and protecting control problems in this paper. The aircraft engine multi-loop control s...The aircraft engine multi-loop control system is described and the switching control theory is introduced to solve the regulating and protecting control problems in this paper. The aircraft engine multi-loop control system is firstly described and the control problems are formulated. Secondly, the theory of the smooth switching control is devoted and a new extended scheme for the smooth switching of a switched control system is introduced. Then, for the key technologies of aero-engines switching control, a design algorithm is presented which can determine which candidate controller should be put in feedback with the plant to achieve a desired performance and the procedure to design the aircraft engine multi-loop control system is detailed. The switching performance objectives and the switching scheme are given and a family of PID controllers and compensators is designed. The simulation shows that using the switching control design method can not only improve the dynamic performance of the aircraft engine control system and reduce the switching times, but also guarantee the stability in some peculiar occasions.展开更多
This paper focuses on the direct current-alternating current (DC-AC) interfaced microsource based H∞ robust control strategies in microgrids. It presents detail of a DC-AC interfaced microsource model which is conn...This paper focuses on the direct current-alternating current (DC-AC) interfaced microsource based H∞ robust control strategies in microgrids. It presents detail of a DC-AC interfaced microsource model which is connected to the power grid through a controllable switch. A double loop current-regulated voltage control scheme for the DC-AC interface is designed. In the case of the load disturbance and the model uncertainties, the inner voltage and current loop are produced based on the H∞ robust control strategies. The outer power loop uses the droop characteristic controller. Finally, the scheme is simulated using the Matlab/Simulink. The simulation results demonstrate that DC-AC interfaced microsource system can supply high quality power. Also, the proposed control scheme can make the system switch smoothly between the isolated mode and grid-connected mode. 更多展开更多
基金supported by the Aeronautical Science Foundation of China(20175752045)。
文摘A tilt-rotor aircraft has three flight modes: helicopter mode, airplane mode and conversion mode. Unlike the traditional aircraft, the tilt-rotor aircraft, which combines the characteristics of helicopters and fixed-wing aircraft, is a complex multi-body system with the violent variation of the aerodynamic parameters. For these characteristics, a new smooth switching control scheme is provided for the tilt-rotor aircraft. First, the reference commands for airspeed and nacelle angles are calculated by analyzing the conversion corridor and the conversion path. Subsequently, based on the finite-time switching theorem, an average dwell time condition is designed to guarantee the stability in the switching process. Besides, considering the state vibrations and bumps may appear in switching points, the fuzzy weighted logic is employed to improve the system transient performance. For disturbance rejection, three extended state observers are designed separately to estimate the disturbances in the switched systems. Compared with the traditional auto disturbance rejection control and proportion integration differentiation control, this method overcomes the conservatism of wasting the whole model information. The control performances of robustness and smoothness are verified with simulation, which shows that the new smooth switching control scheme is more targeted and superior than the traditional design method.
基金supported by the National Natural Science Foundation of China(Nos.61273083 and 61374012)
文摘This paper is concerned with a systematic method of smooth switching linear parameter- varying (LPV) controllers design for a morphing aircraft with a variable wing sweep angle. The morphing aircraft is modeled as an LPV system, whose scheduling parameter is the variation rate of the wing sweep angle. By dividing the scheduling parameter set into subsets with overlaps, output feedback controllers which consider smooth switching are designed and the controllers in over- lapped subsets are interpolated from two adjacent subsets. A switching law without constraint on the average dwell time is obtained which makes the conclusion less conservative. Furthermore, a systematic algorithm is developed to improve the efficiency of the controllers design process. The parameter set is divided into the fewest subsets on the premise that the closed-loop system has a desired performance. Simulation results demonstrate the effectiveness of this approach.
文摘The sliding mode controller of mobile welding robot is established in this paper through applying the method of variable structure control with sliding mode into the control of the mobile welding robot. The traditional switching function smooth method is improved by combining the smoothed switching function with the time-varying control gain. It is shown that the proposed sliding mode controller is robust to bounded external disturbances. Experimental results demonstrate that sliding mode controller algorithm can be used into seam tracking and the tracking system is stable with bounded uncertain disturbance. In the seam tracking process, the robot moves steadily without any obvious chattering.
基金supported by the National Natural Science Foundation of China (Grant No. 61104146/F030203)Innovation Plan of Aero Engine Complex System Safety by the Ministry of Education Chang Jiang Scholars of China (Grant No. IRT0905)
文摘The aircraft engine multi-loop control system is described and the switching control theory is introduced to solve the regulating and protecting control problems in this paper. The aircraft engine multi-loop control system is firstly described and the control problems are formulated. Secondly, the theory of the smooth switching control is devoted and a new extended scheme for the smooth switching of a switched control system is introduced. Then, for the key technologies of aero-engines switching control, a design algorithm is presented which can determine which candidate controller should be put in feedback with the plant to achieve a desired performance and the procedure to design the aircraft engine multi-loop control system is detailed. The switching performance objectives and the switching scheme are given and a family of PID controllers and compensators is designed. The simulation shows that using the switching control design method can not only improve the dynamic performance of the aircraft engine control system and reduce the switching times, but also guarantee the stability in some peculiar occasions.
基金supported by National Natural Science Foundation of China(No. 51177142)China Postdoctoral Science Foundation(Nos.2012T50019 and 20110490210)Hebei Provincial Natural Science Foundation of China(No.F2012203063)
文摘This paper focuses on the direct current-alternating current (DC-AC) interfaced microsource based H∞ robust control strategies in microgrids. It presents detail of a DC-AC interfaced microsource model which is connected to the power grid through a controllable switch. A double loop current-regulated voltage control scheme for the DC-AC interface is designed. In the case of the load disturbance and the model uncertainties, the inner voltage and current loop are produced based on the H∞ robust control strategies. The outer power loop uses the droop characteristic controller. Finally, the scheme is simulated using the Matlab/Simulink. The simulation results demonstrate that DC-AC interfaced microsource system can supply high quality power. Also, the proposed control scheme can make the system switch smoothly between the isolated mode and grid-connected mode. 更多