The effect of Sb content on the properties of Sn-Bi solders was studied. The nonequilibrium melting behaviors of a series of Sn-Bi-Sb solders were examined by differential scanning calorimetry (DSC). The spreading t...The effect of Sb content on the properties of Sn-Bi solders was studied. The nonequilibrium melting behaviors of a series of Sn-Bi-Sb solders were examined by differential scanning calorimetry (DSC). The spreading test was carried out to characterize the wettability of Sn-Bi-Sb solders on Cu substrate. The mechanical properties of the solders/Cu joints were evaluated. The results show that the ternary alloy solders contain eutectic structure resulting from quasi-peritetic reaction. With the increase of Sb content, the amount of the eutectic structure increases. At a heating rate of 5 ℃/min, Sn-Bi-Sb alloys exhibit a higher melting point and a wider melting range. A small amount of Sb has an impact on the wettability of Sn-Bi solders. The reaction layers form during spreading process. Sb is detected in the reaction layer while Bi is not detected. The total thickness of reaction layer between solder and Cu increases with the increase of the Sb content. The shear strength of the Sn-Bi-Sb solders increases as the Sb content increases.展开更多
The influence of the slip mode on the microstructure evolution and compressive flow behavior at different strains in an extruded dilute Mg−0.5Bi−0.5Sn−0.5Mn alloy was analyzed through electron backscatter diffraction,...The influence of the slip mode on the microstructure evolution and compressive flow behavior at different strains in an extruded dilute Mg−0.5Bi−0.5Sn−0.5Mn alloy was analyzed through electron backscatter diffraction,X-ray diffraction,transmission electron microscopy,and hot compression tests.The results showed that at a low strain of 0.05,the basal<a>,pyramidal<a>and<c+a>slip modes were simultaneously activated.Nevertheless,at the middle stage of deformation(strain of 0.1,0.2 and 0.5),the<a>slip mode was difficult to be activated and<c+a>slip mode became dominant.The deformation process between strains of 0.2 and 0.5 was primarily characterized by the softening effect resulting from the simultaneous occurrence of continuous dynamic recrystallization and discontinuous dynamic recrystallization.Ultimately,at strain of 0.8,a dynamic equilibrium was established,with the flow stress remaining constant due to the interplay between the dynamic softening brought about by discontinuous dynamic recrystallization and the work-hardening effect induced by the activation of the basal<a>slip mode.展开更多
基金Project(51004039)supported by the National Natural Science Foundation of ChinaProject(2012713)supported by the Cooperation Promoting Foundation in Science and Technology of Shaoxing City,China
文摘The effect of Sb content on the properties of Sn-Bi solders was studied. The nonequilibrium melting behaviors of a series of Sn-Bi-Sb solders were examined by differential scanning calorimetry (DSC). The spreading test was carried out to characterize the wettability of Sn-Bi-Sb solders on Cu substrate. The mechanical properties of the solders/Cu joints were evaluated. The results show that the ternary alloy solders contain eutectic structure resulting from quasi-peritetic reaction. With the increase of Sb content, the amount of the eutectic structure increases. At a heating rate of 5 ℃/min, Sn-Bi-Sb alloys exhibit a higher melting point and a wider melting range. A small amount of Sb has an impact on the wettability of Sn-Bi solders. The reaction layers form during spreading process. Sb is detected in the reaction layer while Bi is not detected. The total thickness of reaction layer between solder and Cu increases with the increase of the Sb content. The shear strength of the Sn-Bi-Sb solders increases as the Sb content increases.
基金supported by the National Natural Science Foundation of China (No.51901153)Shanxi Scholarship Council of China (No.2019032)+2 种基金Natural Science Foundation of Shanxi Province,China (No.202103021224049)the Shanxi Zhejiang University New Materials and Chemical Research Institute Scientific Research Project,China (No.2022SX-TD025)the Open Project of Salt Lake Chemical Engineering Research Complex,Qinghai University,China (No.2023-DXSSKF-Z02)。
文摘The influence of the slip mode on the microstructure evolution and compressive flow behavior at different strains in an extruded dilute Mg−0.5Bi−0.5Sn−0.5Mn alloy was analyzed through electron backscatter diffraction,X-ray diffraction,transmission electron microscopy,and hot compression tests.The results showed that at a low strain of 0.05,the basal<a>,pyramidal<a>and<c+a>slip modes were simultaneously activated.Nevertheless,at the middle stage of deformation(strain of 0.1,0.2 and 0.5),the<a>slip mode was difficult to be activated and<c+a>slip mode became dominant.The deformation process between strains of 0.2 and 0.5 was primarily characterized by the softening effect resulting from the simultaneous occurrence of continuous dynamic recrystallization and discontinuous dynamic recrystallization.Ultimately,at strain of 0.8,a dynamic equilibrium was established,with the flow stress remaining constant due to the interplay between the dynamic softening brought about by discontinuous dynamic recrystallization and the work-hardening effect induced by the activation of the basal<a>slip mode.