期刊文献+
共找到61,185篇文章
< 1 2 250 >
每页显示 20 50 100
A comparative study for petroleum removal capacities of the bacterial consortia entrapped in sodium alginate,sodium alginate/poly(vinyl alcohol),and bushnell haas agar
1
作者 Sezen Bilen Ozyurek 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期705-715,共11页
The purpose of this study was to identify and compare the degradation efficiencies of free and entrapped bacterial consortia(Staphylococcus capitis CP053957.1 and Achromobacter marplatensis MT078618.1)to different pol... The purpose of this study was to identify and compare the degradation efficiencies of free and entrapped bacterial consortia(Staphylococcus capitis CP053957.1 and Achromobacter marplatensis MT078618.1)to different polymers such as Sodium Alginate(SA),Sodium Alginate/Poly(Vinyl Alcohol)(SA/PVA),and Bushnell Haas Agar(BHA).In addition to SA and SA/PVA,which are cost-effective,non-toxic and have different functional groups,BHA,which is frequently encountered in laboratory-scale studies but has not been used as an entrapment material until now.Based on these,the polymers with different surface morphologies and chemical compositions were analyzed by SEM and FT-IR.While the petroleum removal efficiency was higher with the entrapped bacterial consortia than with the free one,BHA-entrapped bacterial consortium enhanced the petroleum removal more than SA and SA/PVA.Accordingly,the degradation rate of bacterial consortia entrapped with BHA was 2.039 day^(-1),SA/PVA was 1.560,SA was 0.993,the half-life period of BHA-entrapped bacterial consortia is quite low(t_(1/2)=0.339)compared with SA(t_(1/2)=0.444)and SA/PVA(t_(1/2)=0.697).The effects of the four main factors such as:amount of BHA(0.5,1,1.5,2,2.5,3 g),disc size(4,5,6,7,8 mm),inoculum concentration(1,2.5,5,7.5,10 mL),and incubation period on petroleum removal were also investigated.The maximum petroleum removal(94.5%)was obtained at≥2.5 mL of bacterial consortium entrapped in 2 g BHA with a 7 mm disc size at 168 h and the results were also confirmed by statistical analysis.Although a decrease was observed during the reuse of bacterial consortium entrapped in BHA,the petroleum removal was still above 50%at 10th cycle.Based on GC-MS analysis,the removal capacity of BHA-entrapped consortium was over 90%for short-chain n-alkanes and 80%for medium-chain n-alkanes.Overall,the obtained data are expected to provide a potential guideline in cleaning up the large-scale oil pollution in the future.Since there has been no similar study investigating petroleum removal with the bacterial consortia entrapped with BHA,this novel entrapment material can potentially be used in the treatment of petroleum pollution in advanced remediation studies. 展开更多
关键词 Entrapment of bacterial consortia PETROLEUM RemovalBushnell Haas agar sodium alginate sodium alginate/poly(vinyl alcohol)
下载PDF
Constructing a biofunctionalized 3D-printed gelatin/sodium alginate/chitosan tri-polymer complex scaffold with improvised biological andmechanical properties for bone-tissue engineering
2
作者 Amit Kumar Singh Krishna Pramanik Amit Biswas 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第1期57-73,共17页
Sodium alginate(SA)/chitosan(CH)polyelectrolyte scaffold is a suitable substrate for tissue-engineering application.The present study deals with further improvement in the tensile strength and biological properties of... Sodium alginate(SA)/chitosan(CH)polyelectrolyte scaffold is a suitable substrate for tissue-engineering application.The present study deals with further improvement in the tensile strength and biological properties of this type of scaffold to make it a potential template for bone-tissue regeneration.We experimented with adding 0%–15%(volume fraction)gelatin(GE),a protein-based biopolymer known to promote cell adhesion,proliferation,and differentiation.The resulting tri-polymer complex was used as bioink to fabricate SA/CH/GEmatrices by three-dimensional(3D)printing.Morphological studies using scanning electron microscopy revealed the microfibrous porous architecture of all the structures,which had a pore size range of 383–419μm.X-ray diffraction and Fourier-transform infrared spectroscopy analyses revealed the amorphous nature of the scaffold and the strong electrostatic interactions among the functional groups of the polymers,thereby forming polyelectrolyte complexes which were found to improve mechanical properties and structural stability.The scaffolds exhibited a desirable degradation rate,controlled swelling,and hydrophilic characteristics which are favorable for bone-tissue engineering.The tensile strength improved from(386±15)to(693±15)kPa due to the increased stiffness of SA/CH scaffolds upon addition of gelatin.The enhanced protein adsorption and in vitro bioactivity(forming an apatite layer)confirmed the ability of the SA/CH/GE scaffold to offer higher cellular adhesion and a bone-like environment to cells during the process of tissue regeneration.In vitro biological evaluation including the MTT assay,confocal microscopy analysis,and alizarin red S assay showed a significant increase in cell attachment,cell viability,and cell proliferation,which further improved biomineralization over the scaffold surface.In addition,SA/CH containing 15%gelatin designated as SA/CH/GE15 showed superior performance to the other fabricated 3D structures,demonstrating its potential for use in bone-tissue engineering. 展开更多
关键词 SCAFFOLD Biomaterial sodium alginate CHITOSAN GELATIN 3D printing Tissue engineering
下载PDF
Sodium Sulfite as a Novel Hypoxia Revulsant Involved in Hypoxic Regulation in Escherichia coli
3
作者 YE Qiao HUO Jia Nan +4 位作者 LUO Yuan MEI Zhu Song FANG Long Mei GUO Bing Qian WANG Guang Yun 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2024年第2期228-232,共5页
As a reducing salt,sodium sulfite could deprive oxygen in solution,which could mimic hypoxic stress in Caenorhabditis elegans.In this study,the wildtype Escherichia coli strain MG1655 was used to examine the inhibitio... As a reducing salt,sodium sulfite could deprive oxygen in solution,which could mimic hypoxic stress in Caenorhabditis elegans.In this study,the wildtype Escherichia coli strain MG1655 was used to examine the inhibition of sodium sulfite-induced hypoxia by observing the bacterial growth curves. 展开更多
关键词 HYPOXIC sodium observing
下载PDF
Phase-engineering modulation of Mn-based oxide cathode for constructing super-stable sodium storage
4
作者 Quanqing Zhao Ruru Wang +5 位作者 Ming Gao Bolin Liu Jianfeng Jia Haishun Wu Youqi Zhu Chuanbao Cao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期421-427,I0010,共8页
The Mn-based oxide cathode with enriched crystal phase structure and component diversity can provide the excellent chemistry structure for Na-ion batteries.Nevertheless,the broad application prospect is obstructed by ... The Mn-based oxide cathode with enriched crystal phase structure and component diversity can provide the excellent chemistry structure for Na-ion batteries.Nevertheless,the broad application prospect is obstructed by the sluggish Na^(+)kinetics and the phase transitions upon cycling.Herein,we establish the thermodynamically stable phase diagram of various Mn-based oxide composites precisely controlled by sodium content tailoring strategy coupling with co-doping and solid-state reaction.The chemical environment of the P2/P'3 and P2/P3 biphasic composites indicate that the charge compensation mechanism stems from the cooperative contribution of anions and cations.Benefiting from the no phase transition to scavenge the structure strain,P2/P'3 electrode can deliver long cycling stability(capacity retention of 73.8%after 1000 cycles at 10 C)and outstanding rate properties(the discharge capacity of 84.08 mA h g^(-1)at 20 C)than P2/P3 electrode.Furthermore,the DFT calculation demonstrates that the introducing novel P'3 phase can significantly regulate the Na^(+)reaction dynamics and modify the local electron configuration of Mn.The effective phase engineering can provide a reference for designing other high-performance electrode materials for Na-ion batteries. 展开更多
关键词 sodium ion battery Oxide cathode Phase engineering Phase diagram Na~+kinetic
下载PDF
Reversible Mn^(2+)/Mn^(4+)double-electron redox in P3-type layer-structured sodium-ion cathode
5
作者 Jie Zeng Jian Bao +8 位作者 Ya Zhang Xun-Lu Li Cui Ma Rui-Jie Luo Chong-Yu Du Xuan Xu Zhe Mei Zhe Qian Yong-Ning Zhou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期79-88,I0004,共11页
The balance between cationic redox and oxygen redox in layer-structured cathode materials is an important issue for sodium batteries to obtain high energy density and considerable cycle stability.Oxygen redox can cont... The balance between cationic redox and oxygen redox in layer-structured cathode materials is an important issue for sodium batteries to obtain high energy density and considerable cycle stability.Oxygen redox can contribute extra capacity to increase energy density,but results in lattice instability and capacity fading caused by lattice oxygen gliding and oxygen release.In this work,reversible Mn^(2+)/Mn^(4+)redox is realized in a P3-Na_(0.65)Li_(0.2)Co_(0.05)Mn_(0.75)O_(2)cathode material with high specific capacity and structure stability via Co substitution.The contribution of oxygen redox is suppressed significantly by reversible Mn^(2+)/Mn^(4+)redox without sacrificing capacity,thus reducing lattice oxygen release and improving the structure stability.Synchrotron X-ray techniques reveal that P3 phase is well maintained in a wide voltage window of 1.5-4.5 V vs.Na^(+)/Na even at 10 C and after long-term cycling.It is disclosed that charge compensation from Co/Mn-ions contributes to the voltage region below 4.2 V and O-ions contribute to the whole voltage range.The synergistic contributions of Mn^(2+)/Mn^(4+),Co^(2+)/Co^(3+),and O^(2-)/(O_n)^(2-)redox in P3-Na_(0.65)Li_(0.2)Co_(0.05)Mn_(0.75)O_(2)lead to a high reversible capacity of 215.0 m A h g^(-1)at 0.1 C with considerable cycle stability.The strategy opens up new opportunities for the design of high capacity cathode materials for rechargeable batteries. 展开更多
关键词 sodium batteries Cathode materials Layered structure Co substitution
下载PDF
Alkali Tolerance of Concrete Internal Curing Agent Based on Sodium Carboxymethyl Starch
6
作者 陈梅花 刘荣进 +3 位作者 CHEN Ping JING Daiyan WAN Dandan FU Siyuan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期82-90,共9页
Internal curing agents (ICA) based on super absorbent polymer have poor alkali tolerance and reduce the early strength of concrete.An alkali tolerate internal curing agent (CAA-ICA) was designed and prepared by using ... Internal curing agents (ICA) based on super absorbent polymer have poor alkali tolerance and reduce the early strength of concrete.An alkali tolerate internal curing agent (CAA-ICA) was designed and prepared by using sodium carboxymethyl starch (CMS) with high hydrophilicity,acrylic acid (AA) containing anionic carboxylic group and acrylamide (AM) containing non-ionic amide group as the main raw materials.The results show that the ratio of CAA-ICA alkali absorption solution is higher than that existing ICA,which solves the low water absorption ratio of the ICA in alkali environment.The water absorption ratio of CAA-ICA in saturated Ca(OH)_(2) solution is 95.8 g·g^(-1),and the alkali tolerance coefficient is 3.4.The application of CAA-ICA in cement-based materials can increase the internal relative humidity and miniaturize the pore structure.The compressive strength of mortar increases up to 12.95%at 28 d,which provids a solution to overcome the reduction of the early strength. 展开更多
关键词 alkali tolerance sodium carboxymethyl starch internal curing agent compressive strength
原文传递
Preparation of sodium molybdate from molybdenum concentrate by microwave roasting and alkali leaching
7
作者 Fengjuan Zhang Chenhui Liu +2 位作者 Srinivasakannan Chandrasekar Yingwei Li Fuchang Xu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期91-105,共15页
The preparation process of sodium molybdate has the disadvantages of high energy consumption,low thermal efficiency,and high raw material requirement of molybdenum trioxide,in order to realize the green and efficient ... The preparation process of sodium molybdate has the disadvantages of high energy consumption,low thermal efficiency,and high raw material requirement of molybdenum trioxide,in order to realize the green and efficient development of molybdenum concentrate resources,this paper proposes a new process for efficient recovery of molybdenum from molybdenum concentrate and preparation of sodium molybdate by microwave-enhanced roasting and alkali leaching.Thermodynamic analysis indicated the feasibility of oxidation roasting of molybdenum concentrate.The effects of roasting temperature,holding time,and power-to-mass ratio on the oxidation product and leaching product sodium molybdate (Na_(2)MoO_(4)·2H_(2)O) were investigated.Under the optimal process conditions:roasting temperature of 700℃,holding time of 110 min,and power-to-mass ratio of 110 W/g,the molybdenum state of existence was converted from MoS_(2) to Mo O3.The process of preparing sodium molybdate by alkali leaching of molybdenum calcine was investigated,the optimal leaching conditions include a solution concentration of 2.5 mol/L,a liquid-to-solid ratio of 2 mL/g,a leaching temperature of 60℃,and leaching solution termination at pH 8.The optimum conditions result in a leaching rate of sodium molybdate of 96.24%.Meanwhile,the content of sodium molybdate reaches 94.08wt%after leaching and removing impurities.Iron and aluminum impurities can be effectively separated by adjusting the pH of the leaching solution with sodium carbonate solution.This research avoids the shortcomings of the traditional process and utilizes the advantages of microwave metallurgy to prepare high-quality sodium molybdate,which provides a new idea for the highvalue utilization of molybdenum concentrate. 展开更多
关键词 molybdenum metallurgy microwave oxidation roasting removing impurities sodium hydroxide leaching
下载PDF
Hierarchically Structured Nb_(2)O_5 Microflowers with Enhanced Capacity and Fast-Charging Capability for Flexible Planar Sodium Ion Micro-Supercapacitors
8
作者 Jiaxin Ma Jieqiong Qin +8 位作者 Shuanghao Zheng Yinghua Fu Liping Chi Yaguang Li Cong Dong Bin Li Feifei Xing Haodong Shi Zhong‑Shuai Wu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期97-109,共13页
Planar Na ion micro-supercapacitors(NIMSCs) that offer both high energy density and power density are deemed to a promising class of miniaturized power sources for wearable and portable microelectron-ics. Nevertheless... Planar Na ion micro-supercapacitors(NIMSCs) that offer both high energy density and power density are deemed to a promising class of miniaturized power sources for wearable and portable microelectron-ics. Nevertheless, the development of NIMSCs are hugely impeded by the low capacity and sluggish Na ion kinetics in the negative electrode.Herein, we demonstrate a novel carbon-coated Nb_(2)O_5 microflower with a hierarchical structure composed of vertically intercrossed and porous nanosheets, boosting Na ion storage performance. The unique structural merits, including uniform carbon coating, ultrathin nanosheets and abun-dant pores, endow the Nb_(2)O_5 microflower with highly reversible Na ion storage capacity of 245 mAh g^(-1) at 0.25 C and excellent rate capability.Benefiting from high capacity and fast charging of Nb_(2)O_5 microflower, the planar NIMSCs consisted of Nb_(2)O_5 negative electrode and activated car-bon positive electrode deliver high areal energy density of 60.7 μWh cm^(-2),considerable voltage window of 3.5 V and extraordinary cyclability. Therefore, this work exploits a structural design strategy towards electrode materials for application in NIMSCs, holding great promise for flexible microelectronics. 展开更多
关键词 Nb_(2)O_5 nanosheets Microflowers sodium ion micro-supercapacitors FLEXIBILITY Energy storage
下载PDF
Differences in the effects and action modes of gut commensals against dextran sulfate sodium-induced intestinal inflammation
9
作者 Dingwu Qu Zhennan Gu +5 位作者 Saisai Feng Leilei Yu Fengwei Tian Hao Zhang Wei Chen Qixiao Zhai 《Food Science and Human Wellness》 SCIE CSCD 2024年第3期1201-1211,共11页
Inflammatory bowel disease(IBD)is a complex relapsing inflammatory disease in the gut and is driven by complicated host-gut microbiome interactions.Gut commensals have shown different functions in IBD prevention and t... Inflammatory bowel disease(IBD)is a complex relapsing inflammatory disease in the gut and is driven by complicated host-gut microbiome interactions.Gut commensals have shown different functions in IBD prevention and treatment.To gain a mechanistic understanding of how different commensals affect intestinal inflammation,we compared the protective effects of 6 probiotics(belonging to the genera Akkermansia,Bifidobacterium,Clostridium,and Enterococcus)on dextran sulfate sodium(DSS)-induced colitis in mice with or without gut microbiota.Anti-inflammatory properties(ratio of interleukin(IL)-10 and IL-12)of these strains were also evaluated in an in vitro mesenteric lymph nodes(MLN)co-culture system.Results showed that 4 probiotics(belonging to the species Bifidobacterium breve,Bifidobacterium bifidum,and Enterococcus faecalis)can alleviate colitis in normal mice.The probiotic strains differed in regulating the intestinal microbiota,cytokines(IL-10,IL-1βand interferon(IFN)-γ),and tight junction function(Zonulin-1 and Occludin).By constrast,Akkermansia muciniphila AH39 and Clostridium butyricum FHuNHHMY49T1 were not protective.Interestingly,B.breve JSNJJNM2 with high anti-inflammatory potential in the MLN model could relieve colitis symptoms in antibiotic cocktail(Abx)-treated mice.Meanwhile,E.faecalis FJSWX25M1induced low levels of cytokines in vitro and showed no beneficial effects.Therefore,we provided insight into the clinical application of probiotics in IBD treatment. 展开更多
关键词 Gut commensals Dextran sulfate sodium(DSS)colitis Intestinal barrier IMMUNOREGULATION
下载PDF
Bimetallic selenide heterostructure with directional built-in electricfield confined in N-doped carbon nanofibers for superior sodium storage with ultralong lifespan
10
作者 Junying Weng Degui Zou +5 位作者 Wenyong Yuan Pengfei Zhou Minghui Ding Jin Zhou Hailin Cong Fangyi Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期407-416,共10页
Constructing heterostructure is considered as an effective strategy to address the sluggish electronic and ionic kinetics of anode materials for sodium ion batteries(SIBs).However,realizing the orientated growth and u... Constructing heterostructure is considered as an effective strategy to address the sluggish electronic and ionic kinetics of anode materials for sodium ion batteries(SIBs).However,realizing the orientated growth and uniform distribution of the heterostructure is still a great challenge.Herein,the regulated novel CoSe_(2)/NiSe_(2)heterostructure confined in N-doped carbon nanofibers(CoSe_(2)/NiSe_(2)@N-C)are prepared by using Co/Ni-ZIF template,in which,the CoSe_(2)/NiSe_(2)heterostructures realize uniform distribution on a micro level.Benefiting from the unique heterostructure and N-doped carbon nanofibers,the CoSe_(2)/NiSe_(2)@N-C deliveries superior rate capability and durable cycle lifespan with a reversible capacity of 400.5 mA h g^(-1)after 5000 cycles at 2 A g^(-1).The Na-ion full battery with CoSe_(2)/NiSe_(2)@N-C anode and layered oxide cathode displays a remarkable energy density of 563 W h kg^(-1)with 241.1 W kg^(-1)at 0.1 A g^(-1).The theoretical calculations disclose that the periodic and directional built-in electric-field along with the heterointerfaces of CoSe_(2)/NiSe_(2)@N-C can accelerate electrochemical reaction kinetics.The in(ex)situ experimental measurements reveal the reversible conversion reaction and stable structure of CoSe_(2)/NiSe_(2)@N-C during Na+insertion/extraction.The study highlights the potential ability of precisely controlled heterostructure to stimulate the electrochemical performances of advanced anode for SIBs. 展开更多
关键词 CoSe_(2)/NiSe_(2)heterostructure Built-in electric-field Rate capability Ultralong lifespan sodium ion batteries
下载PDF
Experimental investigation of the effects of oil asphaltene content on CO_(2) foam stability in the presence of nanoparticles and sodium dodecyl sulfate
11
作者 SADEGHI Hossein KHAZ'ALI Ali Reza MOHAMMADI Mohsen 《Petroleum Exploration and Development》 SCIE 2024年第1期239-250,共12页
Foam stability tests were performed using sodium dodecyl sulfate(SDS)surfactant and SiO2 nanoparticles as foaming system at different asphaltene concentrations,and the half-life of CO_(2) foam was measured.The mechani... Foam stability tests were performed using sodium dodecyl sulfate(SDS)surfactant and SiO2 nanoparticles as foaming system at different asphaltene concentrations,and the half-life of CO_(2) foam was measured.The mechanism of foam stability reduction in the presence of asphaltene was analyzed by scanning electron microscope(SEM),UV adsorption spectrophotometric concentration measurement and Zeta potential measurement.When the mass ratio of synthetic oil to foam-formation suspension was 1:9 and the asphaltene mass fraction increased from 0 to 15%,the half-life of SDS-stabilized foams decreased from 751 s to 239 s,and the half-life of SDS/silica-stabilized foams decreased from 912 s to 298 s.When the mass ratio of synthetic oil to foam-formation suspension was 2:8 and the asphaltene mass fraction increased from 0 to 15%,the half-life of SDS-stabilized foams decreased from 526 s to 171 s,and the half-life of SDS/silica-stabilized foams decreased from 660 s to 205 s.In addition,due to asphaltene-SDS/silica interaction in the aqueous phase,the absolute value of Zeta potential decreases,and the surface charges of particles reduce,leading to the reduction of repulsive forces between two interfaces of thin liquid film,which in turn,damages the foam stability. 展开更多
关键词 CO_(2)foam foam stability ASPHALTENE silica nanoparticle sodium dodecyl sulfate(SDS) repulsive forces surface charges Zeta potential
下载PDF
Reversed-Phase-HPLC Assay Method for Simultaneous Estimation of Sorbitol, Sodium Lactate, and Sodium Chlorides in Pharmaceutical Formulations and Drug Solution for Infusion
12
作者 Sreenivas Pippalla Venugopal Komreddy +2 位作者 Srinivasulu Kasa Vaishnavi Chintala Poluri Venkata Reddy 《American Journal of Analytical Chemistry》 CAS 2024年第2期57-71,共15页
A rapid, straightforward, sensitive, efficient, and cost-effective reverse-phase high-performance liquid chromatographic method was employed for the simultaneous determination of Sorbitol, Sodium Lactate, and Chloride... A rapid, straightforward, sensitive, efficient, and cost-effective reverse-phase high-performance liquid chromatographic method was employed for the simultaneous determination of Sorbitol, Sodium Lactate, and Chlorides in a drug solution for infusion. Sorbitol, Sodium lactate, and Chloride are all officially recognized in the USP monograph. Assay methods are provided through various techniques, with titrations being ineffective for trace-level quantification. Alternatively, IC, AAS, and ICP-MS, though highly accurate, are costly and often unavailable to most testing facilities. When considering methods, it’s important to prioritize both quality control requirements and user-friendly techniques. A simple HPLC simultaneous method was developed for the quantification of Chlorides, Sorbitol, and Sodium Lactate with a shorter run time. The separation utilized a Shimpack SCR-102(H) ion exclusion analytical column (7.9 mm × 300 mm, 7 μm), with a flow rate of 0.6 mL per min. The column compartment temperature was maintained at 40°C, and the injection volume was set at 10 μL, with detection at 200 nm. All measurements were conducted in a 0.1% solution of phosphoric acid. The analytical curves demonstrated linearity (r > 0.9999) in the concentration range of 0.79 to 3.8 mg per mL for Sodium Lactate (SL), 0.16 to 0.79 mg per mL for Sodium Chloride (SC), and 1.5 to 7.2 mg per mL for Sorbitol. Validation of the developed method followed the guidelines of the International Conference on Harmonization (ICH Q2B) and USP. The method exhibited precision, robustness, accuracy, and selectivity. In accelerated stability testing over 6 months, no significant variations were observed in organoleptic analysis and pH. Consequently, the developed method is deemed suitable for routine quality control analyses, enabling the simultaneous determination of Sodium Lactate, Sodium Chloride, and Sorbitol in pharmaceutical formulations and infusions. 展开更多
关键词 SORBITOL sodium Lactate and Chloride ASSAY Analytical Validation HPLC
下载PDF
Comparative efficacy of sodium glucose cotransporter-2 inhibitors in the management of type 2 diabetes mellitus:A real-world experience
13
作者 Lubna Islam Dhanya Jose +3 位作者 Mohammed Alkhalifah Dania Blaibel Vishnu Chandrabalan Joseph M Pappachan 《World Journal of Diabetes》 SCIE 2024年第3期463-474,共12页
BACKGROUND Sodium glucose cotransporter-2 inhibitors(SGLT-2i)are a class of drugs with modest antidiabetic efficacy,weight loss effect,and cardiovascular benefits as proven by multiple randomised controlled trials(RCT... BACKGROUND Sodium glucose cotransporter-2 inhibitors(SGLT-2i)are a class of drugs with modest antidiabetic efficacy,weight loss effect,and cardiovascular benefits as proven by multiple randomised controlled trials(RCTs).However,real-world data on the comparative efficacy and safety of individual SGLT-2i medications is sparse.AIM To study the comparative efficacy and safety of SGLT-2i using real-world clinical data.METHODS We evaluated the comparative efficacy data of 3 SGLT-2i drugs(dapagliflozin,canagliflozin,and empagliflozin)used for treating patients with type 2 diabetes mellitus.Data on the reduction of glycated hemoglobin(HbA1c),body weight,blood pressure(BP),urine albumin creatinine ratio(ACR),and adverse effects were recorded retrospectively.RESULTS Data from 467 patients with a median age of 64(14.8)years,294(62.96%)males and 375(80.5%)Caucasians were analysed.Median diabetes duration was 16.0(9.0)years,and the duration of SGLT-2i use was 3.6(2.1)years.SGLT-2i molecules used were dapagliflozin 10 mg(n=227;48.6%),canagliflozin 300 mg(n=160;34.3%),and empagliflozin 25 mg(n=80;17.1).Baseline median(interquartile range)HbA1c in mmol/mol were:dapagliflozin-78.0(25.3),canagliflozin-80.0(25.5),and empagliflozin-75.0(23.5)respectively.The respective median HbA1c reduction at 12 months and the latest review(just prior to the study)were:66.5(22.8)&69.0(24.0),67.0(16.3)&66.0(28.0),and 67.0(22.5)&66.5(25.8)respectively(P<0.001 for all comparisons from baseline).Significant improvements in body weight(in kilograms)from baseline to study end were noticed with dapagliflozin-101(29.5)to 92.2(25.6),and canagliflozin 100(28.3)to 95.3(27.5)only.Significant reductions in median systolic and diastolic BP,from 144(21)mmHg to 139(23)mmHg;(P=0.015),and from 82(16)mmHg to 78(19)mmHg;(P<0.001)respectively were also observed.A significant reduction of microalbuminuria was observed with canagliflozin only[ACR 14.6(42.6)at baseline to 8.9(23.7)at the study end;P=0.043].Adverse effects of SGLT-2i were as follows:genital thrush and urinary infection-20(8.8%)&17(7.5%)with dapagliflozin;9(5.6%)&5(3.13%)with canagliflozin;and 4(5%)&4(5%)with empagliflozin.Diabetic ketoacidosis was observed in 4(1.8%)with dapagliflozin and 1(0.63%)with canagliflozin.CONCLUSION Treatment of patients with SGLT-2i is associated with statistically significant reductions in HbA1c,body weight,and better than those reported in RCTs,with low side effect profiles.A review of large-scale real-world data is needed to inform better clinical practice decision making. 展开更多
关键词 sodium glucose cotransporter-2 inhibitors Empagliflozin Canagliflozin DAPAGLIFLOZIN Type 2 diabetes mellitus Cardiovascular disease Albumin creatinine ratio DIABESITY
下载PDF
Interfacial built-in electric field and crosslinking pathways enabling WS_(2)/Ti_(3)C_(2)T_(x) heterojunction with robust sodium storage at low temperature
14
作者 Jiabao Li Shaocong Tang +6 位作者 Jingjing Hao Quan Yuan Tianyi Wang Likun Pan Jinliang Li Shenbo Yang Chengyin Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期635-645,I0014,共12页
Developing efficient energy storage for sodium-ion batteries(SIBs)by creating high-performance heterojunctions and understanding their interfacial interaction at the atomic/molecular level holds promise but is also ch... Developing efficient energy storage for sodium-ion batteries(SIBs)by creating high-performance heterojunctions and understanding their interfacial interaction at the atomic/molecular level holds promise but is also challenging.Besides,sluggish reaction kinetics at low temperatures restrict the operation of SIBs in cold climates.Herein,cross-linking nanoarchitectonics of WS_(2)/Ti_(3)C_(2)T_(x) heterojunction,featuring built-in electric field(BIEF),have been developed,employing as a model to reveal the positive effect of heterojunction design and BIEF for modifying the reaction kinetics and electrochemical activity.Particularly,the theoretical analysis manifests the discrepancy in work functions leads to the electronic flow from the electron-rich Ti_(3)C_(2)T_(x) to layered WS_(2),spontaneously forming the BIEF and“ion reservoir”at the heterogeneous interface.Besides,the generation of cross-linking pathways further promotes the transportation of electrons/ions,which guarantees rapid diffusion kinetics and excellent structure coupling.Consequently,superior sodium storage performance is obtained for the WS_(2)/Ti_(3)C_(2)T_(x) heterojunction,with only 0.2%decay per cycle at 5.0 A g^(-1)(25℃)up to 1000 cycles and a high capacity of 293.5 mA h g^(-1)(0.1A g^(-1)after 100 cycles)even at-20℃.Importantly,the spontaneously formed BIEF,accompanied by“ion reservoir”,in heterojunction provides deep understandings of the correlation between structure fabricated and performance obtained. 展开更多
关键词 WS_(2)/Ti_(3)C_(2)T_(x)heterojunction Built-in electric field Ion reservoir Reaction kinetics sodium storage performance at low temperature
下载PDF
Dormancy of Amaranthus retroflexus L. Seeds and Physiological Response Seedlings to Acifluorfen Sodium
15
作者 Ding Wei Liu Junliang +1 位作者 Cheng Zhuo Cheng Peng 《Journal of Northeast Agricultural University(English Edition)》 CAS 2024年第1期1-10,共10页
Amaranthus retroflexus L. is a serious and widespread malignant weed in soybean fields in Heilongjiang Province. Exploring the dormancy characteristics of A. retroflexus L. seeds and the physiological response of its ... Amaranthus retroflexus L. is a serious and widespread malignant weed in soybean fields in Heilongjiang Province. Exploring the dormancy characteristics of A. retroflexus L. seeds and the physiological response of its seedlings to acifluorfen sodium can provide a basis for further researches on its resistance mechanism. Using newly harvested and stored A. retroflexus L. seeds for one year as experimental materials, the effects of different concentrations of HCl, NaOH, water temperature, gibberellic acid(GA) and polyethylene glycol(PEG) on the dormancy and germination of A. retroflexus L. seeds were studied. The sensitivity of A. retroflexus L.to acifluorfen sodium was determined using bioassay. The effects on leaf chlorophyll content and target enzyme activity were studied at a normal dosage of 360 g a.i. hm^(-2) and a doubling dosage of 720 g a.i. hm^(-2) of acifluorfen sodium. Newly harvested seeds exhibiting dormancy were soaked in water of various temperatures and in different concentrations of NaOH and HCl, which were ineffective in breaking the seed dormancy. GA could break seed dormancy, and the highest seed germination rate reached 93.33% when they were soaked at 3 000 mg·L^(-1) for 72 h and 4 000 mg·L^(-1) for 48 h. The drought stress was simulated with a 15%-25% polyethylene glycol solution, which had no significant effect on the seed germination rate. The GR_(50) value of acifluorfen sodium for A. retroflexus L. was 705.7 g a.i. hm^(-2), which was 1.96 times the recommended dose in the field. After the application of different doses of acifluorfen sodium, the chlorophyll content of A. retroflexus L. reached its minimum value 3 days after treatment(DAT), and then gradually increased. The activity of the target enzyme protoporphyrinogen oxidase(PPO) reached the highest value at 7 DAT under different dosages, and gradually returned to normal levels thereafter. Soaking with gibberellin was an effective method to break seed dormancy. A. retroflexus L. seeds had certain drought resistance during the germination process. A. retroflexus L. was not sensitive to acifluorfen sodium and acifluorfen sodium ether, and could not effectively inhibit the PPO activity, indicating that A. retroflexus L. had target resistance to acifluorfen sodium. 展开更多
关键词 Amaranthus retroflexus L.seed seed dormancy acifluorfen sodium target resistance
下载PDF
Preparation and release of curcumin/silk fibroin/sodium alginate film
16
作者 Yerong Yuan Jun’an Zheng +3 位作者 Zunchao Liu Wei Li Jiaqing Cao Xiangrong Zhang 《Journal of Polyphenols》 2024年第1期1-10,共10页
The aim of this study was to prepare silk fibroin/sodium alginate composite film containing curcumin by casting method.Orthogonal test was used to optimize the formulation according to the values of tensile strength a... The aim of this study was to prepare silk fibroin/sodium alginate composite film containing curcumin by casting method.Orthogonal test was used to optimize the formulation according to the values of tensile strength and elongation at break.The release of curcumin in the optimal film was studied in order to explore its application as wound dressing.The results showed that the optimum composition of curcumin/silk fibroin/sodium alginate composite film was as follows:Silk fibroin(70 mg/mL)2.7 g,sodium alginate(24 mg/mL)0.84 g,span 40(5.0 mg/mL)0.4 g,glycerol(3.75%,V/V)3 mL,curcumin(0.2 mg/mL)0.016 g.The optimum film showed the tensile strength and the elongation at break was(0.628±0.032)MPa and(0.794±0.046)%,respectively. 展开更多
关键词 CURCUMIN silk fibroin sodium alginate composite film
下载PDF
Recent advanced development of stabilizing sodium metal anodes 被引量:1
17
作者 Liyu Zhu Yucheng Li +3 位作者 Jingyang Zhao Jing Liu Luying Wang Jiandu Lei 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第5期1279-1307,共29页
As the application of next-generation energy storage systems continues to expand,rechargeable secondary batteries with enhanced energy density and safety are imperative for energy iteration.Sodium-ion batteries(SIBs)h... As the application of next-generation energy storage systems continues to expand,rechargeable secondary batteries with enhanced energy density and safety are imperative for energy iteration.Sodium-ion batteries(SIBs)have attracted extensive attention and are recognized as ideal candidates for large-scale energy storage due to the abundant sodium resources and low cost.Sodium metal anodes(SMAs)have been considered as one of the most attractive anode materials for SIBs owing to their high specific capacity(1166 mAh g^(-1)),low redox potential,and abundant natural resources.However,the uncontrollable dendrite growth and inevitable side reactions on SMA lead to the continuous deterioration of the electrochemical performance,causing serious safety concerns and limiting their practical application in the future.Therefore,the construction of stable dendrite-free SMAs is a pressing problem for advanced sodium metal batteries(SMBs).In this review,we comprehensively summarize the research progress in suppressing the formation of sodium dendrite,including artificial solid electrolyte interphase(SEI),liquid electrolyte modification,three-dimensional(3D)host materials,and solid-state electrolyte.Additionally,key aspects and prospects of future research directions for SMAs are highlighted.We hope that this timely review can provide an overall picture of sodium protection strategies and stimulate more research in the future. 展开更多
关键词 sodium-metal battery sodium metal anode Dendrite growth Artificial solid electrolyte interphases Electrolyte engineering
下载PDF
High Fe^(LS)(C)electrochemical activity of an iron hexacyanoferrate cathode boosts superior sodium ion storage 被引量:1
18
作者 Junhong Guo Fan Feng +7 位作者 Shiqiang Zhao Zhenhai Shi Rui Wang Meng Yang Fangfang Chen Suli Chen Zi-Feng Ma Tianxi Liu 《Carbon Energy》 SCIE CSCD 2023年第5期67-77,共11页
Sodium iron hexacyanoferrate(FeHCF)is one of the most promising cathode materials for sodium-ion batteries(SIBs)due to its low cost theoretical capacity.However,the low electrochemical activity of Fe^(LS)(C)in FeHCF d... Sodium iron hexacyanoferrate(FeHCF)is one of the most promising cathode materials for sodium-ion batteries(SIBs)due to its low cost theoretical capacity.However,the low electrochemical activity of Fe^(LS)(C)in FeHCF drags down its practical capacity and potential plateau.Herein,FeHCF with high Fe^(LS)(C)electrochemical activity(C-FeHCF)is synthesized via a facile citric acid-assisted solvothermal method.As the cathode of SIBs,C-FeHCF shows superior cycling stability(ca.87.3%capacity retention for 1000 cycles at 10 C)and outstanding rate performance(ca.68.5%capacity retention at 50 C).Importantly,the contribution of Fe^(LS)(C)to the whole capacity was quantitatively analyzed via combining dQ/dV and discharge curve for the first time,and the index reaches 44.53%for C-FeHCF,close to the theoretical value.In-situ X-ray diffraction proves the structure stability of C-FeHCF during charge-discharge process,ensuring its superior cycling performance.Furthermore,the application feasibility of the C-FeHCF cathode in quasi-solid SIBs is also evaluated.The quasi-solid SIBs with the C-FeHCF cathode exhibit excellent electrochemical performance,delivering an initial discharge capacity of 106.5 mAh g^(−1) at 5 C and high capacity retention of 89.8%over 1200 cycles.This work opens new insights into the design and development of advanced cathode materials for SIBs and the beyond. 展开更多
关键词 cathode material electrochemical activity sodium-ion batteries sodium iron hexacyanoferrate structural evolution
下载PDF
Whole-process optimization for industrial production of glucosamine sulfate sodium chloride based on QbD concept
19
作者 Yingjun Lin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第2期153-161,共9页
The double salt of glucosamine sulfate sodium chloride(glucosamine-SP) is an important pharmaceuticals ingredient for healing osteoarthritis. However, the study about its industrial production is rarely documented, le... The double salt of glucosamine sulfate sodium chloride(glucosamine-SP) is an important pharmaceuticals ingredient for healing osteoarthritis. However, the study about its industrial production is rarely documented, let alone the optimization over the whole process to produce glucosamine-SP using glucosamine hydrochloride and anhydrous sodium sulfate as synthetic raw materials. In order to improve the production efficiency, this study screened the process parameters based on the concept of quality by design(QbD), optimized 13 operational parameters related to reaction and separation in the process, and finally proposed the mixed dropping process. The reaction conditions for the preparation of glucosamineSP were found as follows: the molar ratio of anhydrous sodium sulfate to glucosamine hydrochloride is 0.42, the mass ratio of water to glucosamine hydrochloride is is 2.0, the reaction temperature is 50 ℃ and the reaction time is 1 h. Through step-by-step scaling up following QbD, the mixed dropping process was successfully applied to achieve a trial production of 200 kg products satisfying national quality standards.In all, the results of this study have high technical value and guiding significance for the industrial mass production of glucosamine-SP. 展开更多
关键词 Glucosamine sulfate sodium chloride OPTIMIZATION Quality by design(QbD) PRODUCTION Glucosamine hydrochloride sodium sulfate
下载PDF
Realizing high-performance Na_(3)V_(2)(PO_(4))_(2)O_(2)F cathode for sodium-ion batteries via Nb-doping
20
作者 Jie Wang Yifeng Yuan +6 位作者 Xianhui Rao Min’an Yang Doudou Wang Ailing Zhang Yan Chen Zhaolin Li Hailei Zhao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第10期1859-1867,共9页
Na_(3)V_(2)(PO_(4))_(2)O_(2)F(NVPOF)has received considerable interest as a promising cathode material for sodium-ion batteries because of its high working voltage and good structural/thermal stability.However,the slu... Na_(3)V_(2)(PO_(4))_(2)O_(2)F(NVPOF)has received considerable interest as a promising cathode material for sodium-ion batteries because of its high working voltage and good structural/thermal stability.However,the sluggish electrode reaction resulting from its low intrinsic electronic conductivity significantly restricts its electrochemical performance and thus its practical application.Herein,Nb-doped Na_(3)V_(2-x)Nb_(x)(PO_(4))_(2)O_(2)F/graphene(rGO)composites(x=0,0.05,0.1)were prepared using a solvothermal method followed by calcination.Compared to the un-doped NVPOF/r GO,doping V-site with high-valence Nb element(Nb^(5+))(Na_(3)V_(1.95)Nb_(0.05)(PO_(4))_(2)O_(2)F/r GO(NVN05POF/rGO))can result in the generated V4^(+)/V3^(+)mixed-valence,ensuring the lower bandgap and thus the increased intrinsic electronic conductivity.Besides,the expanded lattice space favors the Na^(+)migration.With the structure feature where NVN05POF particles are attached to the rGO sheets,the electrode reaction kinetics is further accelerated owing to the well-constructed electron conductive network.As a consequence,the as-prepared NVN05POF/r GO sample exhibits a high specific capacity of~72 m Ah·g^(-1)at 10C(capacity retention of 65.2%(vs.0.5C))and excellent long-term cycling stability with the capacity fading rate of~0.099%per cycle in 500 cycles at 5C. 展开更多
关键词 sodium vanadium fluorophosphate CATHODE DOPING rate capability sodium-ion batteries
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部