Software projects generally have to deal with producing and managing large and complex software products. As the functionality of computer operations become more essential and yet more critical, there is a great need ...Software projects generally have to deal with producing and managing large and complex software products. As the functionality of computer operations become more essential and yet more critical, there is a great need for the development of modular software system. Component-Based Software Engineering concerned with composing, selecting and designing components to satisfy a set of requirements while minimizing cost and maximizing reliability of the software system. This paper discusses the fuzzy approach for component selection using “Build-or-Buy” strategy in designing a software structure. We introduce a framework that helps developers to decide whether to buy or build components. In case a commercial off-the-shelf (COTS) component is selected then different versions are available for each alternative of a module and only one version will be selected. If a component is an in-house built component, then the alternative of a module is selected. Numerical illustrations are provided to demonstrate the model developed.展开更多
In a component-based software development life cycle, selection of preexisting components is an important task. Every component that has to be reused has an associated risk of failure of not meeting the functional and...In a component-based software development life cycle, selection of preexisting components is an important task. Every component that has to be reused has an associated risk of failure of not meeting the functional and non-functional requirements. A component's failure would lead a developer to look for some other alternative of combinations of COTS, in-house and engineered components among possible candidate combinations. This means design itself can readily change. The very process of design of a software system and component selection seems to be heavily dependent on testing results. Instability of design, further, becomes more severe due to requirements change requests. Therefore, this instability of design has to be essentially mitigated by using proper design and testing approaches, otherwise, it may lead to exorbitantly high testing cost due to the repeated testing of various alternatives. How these three activities: Component-based software design, component selection and component-based software testing are interrelated? What process model is most suited to address this concern? This work explores the above questions and their implication in terms of nature of a process model that can be convincing in case of component-based software development.展开更多
Component based development offers many potential benefits, viz. software reuse, reduced time-to-market, inter- operability, ease of quality certification etc. However, it is not always that benefits derived from addi...Component based development offers many potential benefits, viz. software reuse, reduced time-to-market, inter- operability, ease of quality certification etc. However, it is not always that benefits derived from addition of components from a component repository are more than the costs involved in developing the module from scratch. This work evaluates various software quality models and suggests recommendations for enhancing software quality in COTS (component off-the-shelf) based software products by designing software quality metrics that would help in managing and enhancing quality in component-based software development.展开更多
文摘Software projects generally have to deal with producing and managing large and complex software products. As the functionality of computer operations become more essential and yet more critical, there is a great need for the development of modular software system. Component-Based Software Engineering concerned with composing, selecting and designing components to satisfy a set of requirements while minimizing cost and maximizing reliability of the software system. This paper discusses the fuzzy approach for component selection using “Build-or-Buy” strategy in designing a software structure. We introduce a framework that helps developers to decide whether to buy or build components. In case a commercial off-the-shelf (COTS) component is selected then different versions are available for each alternative of a module and only one version will be selected. If a component is an in-house built component, then the alternative of a module is selected. Numerical illustrations are provided to demonstrate the model developed.
文摘In a component-based software development life cycle, selection of preexisting components is an important task. Every component that has to be reused has an associated risk of failure of not meeting the functional and non-functional requirements. A component's failure would lead a developer to look for some other alternative of combinations of COTS, in-house and engineered components among possible candidate combinations. This means design itself can readily change. The very process of design of a software system and component selection seems to be heavily dependent on testing results. Instability of design, further, becomes more severe due to requirements change requests. Therefore, this instability of design has to be essentially mitigated by using proper design and testing approaches, otherwise, it may lead to exorbitantly high testing cost due to the repeated testing of various alternatives. How these three activities: Component-based software design, component selection and component-based software testing are interrelated? What process model is most suited to address this concern? This work explores the above questions and their implication in terms of nature of a process model that can be convincing in case of component-based software development.
文摘Component based development offers many potential benefits, viz. software reuse, reduced time-to-market, inter- operability, ease of quality certification etc. However, it is not always that benefits derived from addition of components from a component repository are more than the costs involved in developing the module from scratch. This work evaluates various software quality models and suggests recommendations for enhancing software quality in COTS (component off-the-shelf) based software products by designing software quality metrics that would help in managing and enhancing quality in component-based software development.