期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Effect of Saline Water on Soil Acidity, Alkalinity and Nutrients Leaching in Sandy Loamy Soil in Rwamagana Bella Flower Farm, Rwanda
1
作者 Abel Mwubahaman Wali Umaru Garba +3 位作者 Hussein Bizimana Jean de Dieu Bazimenyera Eric Derrick Bugenimana Jean Nepomuscene Nsengiyumva 《Agricultural Sciences》 2024年第1期15-35,共21页
The necessity to saline and sodic waters is sometimes used for irrigating agricultural activities under certain circumstances, but it is important to note that the use of these waters comes with specific consideration... The necessity to saline and sodic waters is sometimes used for irrigating agricultural activities under certain circumstances, but it is important to note that the use of these waters comes with specific considerations and limitations. One way to decrease undesirable effects of sodic waters on the physical and chemical properties of soils is to apply organic and chemical amendments within the soil. This study aimed to assess the effectiveness of saline water on soil acidity, alkalinity and nutrients leaching in sandy loamy soil at Bella flower farm, in Rwamagana District, Rwanda. The water used was from the Muhazi Lake which is classified as Class I (Saline water quality). Column leaching experiments using treated soils were then conducted under saturated conditions. The soil under experimental was first analyzed for its textural classification, soil properties and is classified as sandy loamy soil. The t-test was taken at 1%, 5% and 10% levels of statistical significance compared to control soil. The results indicated that the application of saline water to soils caused an increase in some soil nutrients like increase of Phosphorus (P), Potassium (K<sup>+</sup>), Magnesium (Mg2<sup>+</sup>), Sulphur (S), CN ratio and Sodium (Na<sup>+</sup>) and decreased soil texture, physical and chemical properties and remained soil nutrients. Consequently, the intensive addition of saline water leachates to soil in PVC pipes led to decreased of soil EC through leaching and a raiser Soluble Sodium Percentage (SSP). The rate of saline water application affected the increase accumulation of SAR and Na% in the top soil layers. The study indicated that saline water is an inefficient amendment for sandy soil with saline water irrigation. The study recommends further studies with similar topic with saline water irrigation, as it accentuated the alkalinity levels. 展开更多
关键词 NUTRIENTS LEACHING Saline Water soil Acidity soil alkalinity
下载PDF
Reduction of N2O emissions by DMPP depends on the interactions of nitrogen sources(digestate vs. urea) with soil properties
2
作者 LI Hao-ruo SONG Xiao-tong +1 位作者 Lars RBAKKEN JU Xiao-tang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第1期251-264,共14页
The inhibition of nitrification by mixing nitrification inhibitors(NI)with fertilizers is emerging as an effective method to reduce fertilizer-induced nitrous oxide(N_(2)O)emissions.The additive 3,4-dimethylpyrazole p... The inhibition of nitrification by mixing nitrification inhibitors(NI)with fertilizers is emerging as an effective method to reduce fertilizer-induced nitrous oxide(N_(2)O)emissions.The additive 3,4-dimethylpyrazole phosphate(DMPP)apparently inhibits ammonia oxidizing bacteria(AOB)more than ammonia oxidizing archaea(AOA),which dominate the nitrification in alkaline and acid soil,respectively.However,the efficacy of DMPP in terms of nitrogen sources interacting with soil properties remains unclear.We therefore conducted a microcosm experiment using three typical Chinese agricultural soils with contrasting pH values(fluvo-aquic soil,black soil and red soil),which were fertilized with either digestate or urea in conjunction with a range of DMPP concentrations.In the alkaline fluvo-aquic soil,fertilization with either urea or digestate induced a peak in N_(2)O emission(60μg N kg^(-1)d^(-1))coinciding with the rapid nitrification within 3 d following fertilization.DMPP almost eliminated this peak in N_(2)O emission,reducing it by nearly 90%,despite the fact that the nitrification rate was only reduced by 50%.In the acid black soil,only the digestate induced an N_(2)O emission that increased gradually,reaching its maximum(20μg N kg^(-1)d^(-1))after 5–7 d.The nitrification rate and N_(2)O emission were both marginally reduced by DMPP in the black soil,and the N_(2)O yield(N_(2)O-N per NO2–+NO3–-N produced)was exceptionally high at 3.5%,suggesting that the digestate induced heterotrophic denitrification.In the acid red soil,the N_(2)O emission spiked in the digestate and urea treatments at 50 and 10μg N kg^(-1)d^(-1),respectively,and DMPP reduced the rates substantially by nearly 70%.Compared with 0.5%DMPP,the higher concentrations of DMPP(1.0 to 1.5%)did not exert a significantly(P<0.05)better inhibition effect on the N_(2)O emissions in these soils(either with digestate or urea).This study highlights the importance of matching the nitrogen sources,soil properties and NIs to achieve a high efficiency of N_(2)O emission reduction. 展开更多
关键词 nitrous oxide DIGESTATE UREA nitrification inhibitors DMPP alkaline soils acid soils
下载PDF
Influence of Soil pH, Organic Matter, and Clay Content on Environmentally Available Lead in Soils: A Case Study in Muncie, Indiana, USA
3
作者 Abdulgadir Elnajdi Adam Berland +1 位作者 Jess Haeft Carolyn Dowling 《Open Journal of Soil Science》 2023年第10期414-430,共17页
Due to historical and ongoing industrial practices, lead contamination in urban soils presents substantial health risks, primarily due to its capacity to readily migrate from the soil to humans. This research focused ... Due to historical and ongoing industrial practices, lead contamination in urban soils presents substantial health risks, primarily due to its capacity to readily migrate from the soil to humans. This research focused on the influence of soil pH, organic matter, and clay content on extractable lead amounts. Sixty-four soil samples from Muncie, Indiana, were analyzed, revealing that the examined factors accounted for 21.71% of the Pb mg/Kg-dry variable variance (p −0.4, p < 0.001), with XRD and FTIR analyses confirming the binding affinity of clay minerals with lead. In contrast, no significant relationships were found between Pb concentrations and soil pH (r = 0.07;p = 0.59) or organic matter content (r = 0.12;p = 0.34). Elucidating the interactions between lead, clay minerals, and other soil constituents is crucial for addressing lead-contaminated soils and reducing environmental and health impacts. 展开更多
关键词 soil Acidity/alkalinity Lead Leaching Lead Solubility Health Risks Lead Mobility
下载PDF
Studies on Fast Remediation of Soda Meadow Alkaline Soil
4
作者 ZHOU Lianren SUN Yankun LI Dawei 《Journal of Northeast Agricultural University(English Edition)》 CAS 2010年第4期1-7,共7页
Researches on models of remediation quickly in soda meadow alkaline soil, and dynamic variation of water-salt in saline soil of Zhaozhou County were studied systematically from 2001 to 2006. Realize the vegetation cov... Researches on models of remediation quickly in soda meadow alkaline soil, and dynamic variation of water-salt in saline soil of Zhaozhou County were studied systematically from 2001 to 2006. Realize the vegetation cover of those years through the artificial planting, mixed seeding lyme grass (Elymus dahuricus Turcz) and melilot in the mode of rotary tillage and deep loosening in lower and medium saline soils. The results showed that there was remarkable relationship between net evaporation (difference of precipitation and evaporation) and total salt content in the soil. The net evaporation could be used as a new method to forecast the dynamics variation of salt to ensure the pasture optimum sowing time. Realize the autumnal vegetation cover of those years through direct planting on the bourgeon layer of soda meadow alkaline soil, on the other hand, the covered pasture made the function of restraining salt and alkaline content to realize the biology reverse succession quickly. Forage seeds were seeded directly on the seeding bed of soda alkaline meadow at the end of July. In fall of the same year, a certain amount of biomass was obtained. The model, which has remarkable economical efficiency and use widely, represented the innovative model for the fast vegetation restoration on the soda alkaline meadow soil. 展开更多
关键词 soda alkaline meadow soil rapid remediation net evaporation COMPOST
下载PDF
Effects of nitrogen application rate and hill density on rice yield and nitrogen utilization in sodic saline–alkaline paddy fields 被引量:6
5
作者 GUO Xiao-hong LAN Yu-chen +5 位作者 XU Ling-qi YIN Da-wei LI Hong-yu QIAN Yong-de ZHENG Gui-ping LU Yan-dong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第2期540-553,共14页
Soil salinity and alkalinity can inhibit crop growth and reduce yield,and this has become a global environmental concern.Combined changes in nitrogen (N) application and hill density can improve rice yields in sodic s... Soil salinity and alkalinity can inhibit crop growth and reduce yield,and this has become a global environmental concern.Combined changes in nitrogen (N) application and hill density can improve rice yields in sodic saline–alkaline paddy fields and protect the environment.We investigated the interactive effects of N application rate and hill density on rice yield and N accumulation,translocation and utilization in two field experiments during 2018 and 2019 in sodic saline–alkaline paddy fields.Five N application rates (0 (control),90,120,150,and 180 kg N ha^(-1) (N0–N4),respectively) and three hill densities(achieved by altering the distance between hills,in rows spaced 30 cm apart:16.5 cm (D1),13.3 cm (D2) and 10 cm (D3))were utilized in a split-plot design with three replicates.Nitrogen application rate and hill density significantly affected grain yield.The mathematical model of quadratic saturated D-optimal design showed that with an N application rate in the range of 0–180 kg N ha^(-1),the highest yield was obtained at 142.61 kg N ha^(-1) which matched with a planting density of 33.3×10^(4) ha^(-1).Higher grain yield was mainly attributed to the increase in panicles m^(–2).Nitrogen application rate and hill density significantly affected N accumulation in the aboveground parts of rice plants and showed a highly significant positive correlation with grain yield at maturity.From full heading to maturity,the average N loss rate of the aboveground parts of rice plants in N4 was 70.21% higher than that of N3.This is one of the reasons why the yield of N4 treatment is lower than that of the N3 treatment.Nitrogen accumulation rates in the aboveground parts under treatment N3 (150 kg N ha^(-1)) were 81.68 and 106.07% higher in 2018 and 2019,respectively,than those in the control.The N translocation and N translocation contribution rates increased with the increase in the N application rate and hill density,whereas N productivity of dry matter and grain first increased and then decreased with the increase in N application rate and hill density.Agronomic N-use efficiency decreased with an increase in N application rate,whereas hill density did not significantly affect it.Nitrogen productivity of dry matter and grain,and agronomic N-use efficiency,were negatively correlated with grain yield.Thus,rice yield in sodic saline–alkaline paddy fields can be improved by combined changes in the N application rate and hill density to promote aboveground N accumulation.Our study provides novel evidence regarding optimal N application rates and hill densities for sodic saline–alkaline rice paddies. 展开更多
关键词 rice yield saline–alkaline soil nitrogen accumulation paddy field Songnen Plain
下载PDF
Short-term effects of biochar and gypsum on soil hydraulic properties and sodicity in a saline-alkali soil 被引量:7
6
作者 Yue ZHANG Jingsong YANG +2 位作者 Rongjiang YAO Xiangping WANG Wenping XIE 《Pedosphere》 SCIE CAS CSCD 2020年第5期694-702,共9页
Salt and sodicity of saline-alkali soil adversely affect the construction of ecological landscapes and negatively impact crop production.The reclamation potential of biochar(BC,wheat straw biochar applied at\%by weigh... Salt and sodicity of saline-alkali soil adversely affect the construction of ecological landscapes and negatively impact crop production.The reclamation potential of biochar(BC,wheat straw biochar applied at\%by weight),gypsum(G,0.4%by weight),and gypsum coupled with biochar(GBC)was examined in this laboratory-based study by evaluating their effects on a saline-alkali soil(silt loam)with no amendment as a control(CK).Saline ice and fresh water(simulated rainfall)were leached through soil columns to investigate changes in salt content,sodium adsorption ratio(SAR),alkalinity,and pH of the leachate and the soil.Results showed that saturated water content and field water capacity(FWC)significantly increased by 4.4%and 5.6%,respectively,in the BC treatment after a short incubation time.Co-application of biochar and gypsum(GBC)increased soil saturated hydraulic conductivity(Ks)by 58.4%,which was also significantly higher than the sole addition.Electrical conductivity(EC)of the leachate decreased sharply after saline ice leaching;subsequent freshwater leaching accelerated the removal of the rest of the salts,irrespective of the amendment application.However,the application of gypsum(G and GB)significantly enhanced the removal of exchangeable Na^+and reduced leachate SAR.After leaching,the soil salt content decreased significantly for all treatments.The application of gypsum resulted in a significantly lower soil pH,exchangeable sodium percentage(ESP),SAR,and alkalinity values than those recorded for the CK and BC treatments.These results demonstrated that the co-application of gypsum and biochar could improve saline-alkali soil hydraulic conductivity and decrease leaching-induced sodicity over a short period. 展开更多
关键词 field water capacity saline ice saturated hydraulic conductivity sodium adsorption ratio soil alkalinity
原文传递
Moderate sewage sludge biochar application on alkaline soil for corn growth:a field study 被引量:2
7
作者 Shengyu Xie Guangwei Yu +6 位作者 Ruqing Jiang Jianli Ma Xiaofu Shang Gang Wang Yin Wang Yongan Yang Chunxing Li 《Biochar》 2021年第2期135-147,共13页
In view of the risks induced by the inhibitory effects of applying impracticably large amounts of sewage sludge biochar(SSB)to the alkaline soil,this field study investigated the influence of moderate biochar amendmen... In view of the risks induced by the inhibitory effects of applying impracticably large amounts of sewage sludge biochar(SSB)to the alkaline soil,this field study investigated the influence of moderate biochar amendments(0,1500,4500,and 9000 kg/hm2)on corn growth,alkaline soil properties,and the uptake of potentially toxic elements(PTEs).The results showed that applying more SSB would decrease the ammonium nitrogen concentration and increase the available phosphorus and potassium concentrations,which inhibited corn plant growth because of high background nutrient levels of the alkaline soil.When the alkaline soil was amended with 1500 kg/hm2 SSB,the dry weight of 100 niblets increased from 32.11 g in the control to 35.07 g.There was no significant variation in the total concentration of PTEs in the soil.The concentrations of Mn,Ni,Cu,and Zn in niblets decreased from 5.54,0.83,2.26,and 27.15 mg/kg in the control to 4.47,0.62,1.30,and 23.45 mg/kg,respectively.Accordingly,the health risk from corn consumption was significantly reduced.Furthermore,the combination of SSB and fertilizer improved corn growth and reduced the risk of consumption of PTEs.Therefore,considering the increase in corn fruit yield and the decrease in consumption risk,applying 1500 kg/hm2 of biochar to alkaline soils is a realistically achievable rate,which can broaden the utilization of SSB for remediation of different types of soil. 展开更多
关键词 Sewage sludge biochar Alkaline soil Corn growth soil property Potentially toxic elements soil remediation
原文传递
The applicability of biochar and zero-valent iron for the mitigation of arsenic and cadmium contamination in an alkaline paddy soil 被引量:5
8
作者 Jiangtao Qiao Huanyun Yu +4 位作者 Xiangqin Wang Fangbai Li Qi Wang Yuzhen Yuan Chuanping Liu 《Biochar》 2019年第2期203-212,共10页
In paddy fields, the opposing transformation of arsenic (As) and cadmium (Cd) poses many challenges for their simultaneous remediation.In our previous study,we reported that combined biochar and zero-valent iron(ZVI)a... In paddy fields, the opposing transformation of arsenic (As) and cadmium (Cd) poses many challenges for their simultaneous remediation.In our previous study,we reported that combined biochar and zero-valent iron(ZVI)amendment had great potential for the simultaneous alleviation of As and Cd bioavailability in contaminated acid paddy soil.In this study,an As-and Cd-contaminated alkaline paddy soil was further studied,and the same ZVI-biochar mixtures amendments were applied to evaluate the impact of the mixtures on As and Cd transformation and translocation in the soil-rice system by performing pot experiments with rice.In line with our previous study,the ZVI-biochar composites significantly reduced As and Cd accumulation in different rice tissues,leading to a 42%and 47%decrease in rice grain As and Cd levels,respectively,compared with the control values.The ZVI-biochar mixtures exhibited synergistic effects of biochar and ZVI by enhancing the transformation of bioavailable As and Cd fractions into less bioavailable fractions,and by increasing iron plaque formation to reduce As and Cd bioavailability.Although the bioaccumulation and translocation factors of As and Cd in alkaline paddy soil were generally lower than those in acid paddy soil,particularly in the presence of the ZVI-biochar mixtures,the grain As and Cd levels did not achieve the desired food safety standard levels,probably related to the high soil As content and the small changes in soil pH.Nevertheless,for treating lightly and moderately contaminated paddy soils,ZVI-biochar mixtures can still be a good choice in the future. 展开更多
关键词 BIOCHAR Zero-valent iron Arsenic and cadmium Translocation Alkaline paddy soil
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部