期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Long-term effects of sliver nanoparticles on the abundance and activity of soil microbiome 被引量:1
1
作者 Jing Yang Xu Hongquan Zhang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第7期3-4,共2页
Silver nanoparticles(Ag NPs)are among the most extensively used engineered nanomaterials because of their wellestablished antimicrobial and unique physicochemical properties(Yin et al.,2015).Applications of AgNPs ... Silver nanoparticles(Ag NPs)are among the most extensively used engineered nanomaterials because of their wellestablished antimicrobial and unique physicochemical properties(Yin et al.,2015).Applications of AgNPs have now been expanded beyond their initial use in medicine to industry, agriculture, and households. 展开更多
关键词 Silver nanoparticle soil microbiome Nitrogen cycle Microbial biomass 16S rRNA
原文传递
Soil microbiomes divergently respond to heavy metals and polycyclic aromatic hydrocarbons in contaminated industrial sites 被引量:1
2
作者 Zhen-Ni Yang Ze-Shen Liu +12 位作者 Ke-Huan Wang Zong-Lin Liang Rashidin Abdugheni Ye Huang Run-Hua Wang Hong-Lin Ma Xiao-Kang Wang Mei-Ling Yang Bing-Ge Zhang De-Feng Li Cheng-Ying Jiang Philippe F.-X.Corvini Shuang-Jiang Liu 《Environmental Science and Ecotechnology》 SCIE 2022年第2期82-90,共9页
Contaminated sites from electronic waste(e-waste)dismantling and coking plants feature high concentrations of heavy metals(HMs)and/or polycyclic aromatic hydrocarbons(PAHs)in soil.Mixed contamination(HMsþPAHs)hi... Contaminated sites from electronic waste(e-waste)dismantling and coking plants feature high concentrations of heavy metals(HMs)and/or polycyclic aromatic hydrocarbons(PAHs)in soil.Mixed contamination(HMsþPAHs)hinders land reclamation and affects the microbial diversity and function of soil microbiomes.In this study,we analyzed HM and PAH contamination from an e-waste dismantling plant and a coking plant and evaluated the influences of HM and PAH contamination on soil microbiomes.It was noticed that HMs and PAHs were found in all sites,although the major contaminants of the e-waste dismantling plant site were HMs(such as Cu at 5,947.58±433.44 mg kg^(-1),Zn at 4,961.38±436.51 mg kg^(-1),and Mn at 2,379.07±227.46 mg kg^(-1)),and the major contaminants of the coking plant site were PAHs(such as fluorene at 11,740.06±620.1 mg kg^(-1),acenaphthylene at 211.69±7.04 mg kg^(-1),and pyrene at 183.14±18.89 mg kg^(-1)).The microbiomes(diversity and abundance)of all sites were determined via high-throughput sequencing of 16S rRNA genes,and redundancy analysis was conducted to investigate the relations between soil microbiomes and contaminants.The results showed that the microbiomes of the contaminated sites divergently responded to HMs and PAHs.The abundances of the bacterial genera Sulfuritalea,Pseudomonas,and Sphingobium were positively related to PAHs,while the abundances of the bacterial genera Bryobacter,Nitrospira,and Steroidobacter were positively related to HMs.This study promotes an understanding of how soil microbiomes respond to single and mixed contamination with HMs and PAHs. 展开更多
关键词 soil microbiomes Electronic waste Coking plant Heavy metal Polycyclic aromatic hydrocarbons
原文传递
Microbial Responses of Soil Fertility to Depth of Tillage and Incorporation of Straw in a Haplic Chernozem in Northeast China
3
作者 CHEN Xu SHI Chao +5 位作者 HAN Xiaozeng WANG Xiaohui GUO Zhenxi LU Xinchun ZOU Wenxiu YAN Jun 《Chinese Geographical Science》 SCIE CSCD 2023年第4期693-707,共15页
Straw is widely incorporated into soil worldwide,but most studies have concentrated on the effects of straw mulching or incorporation with topsoil.To determine the effect of depth of straw incorporation on bacterial a... Straw is widely incorporated into soil worldwide,but most studies have concentrated on the effects of straw mulching or incorporation with topsoil.To determine the effect of depth of straw incorporation on bacterial and fungal communities,we established a field experiment in a region in Northeast China with Haplic Chernozems using four treatments:conventional tillage(CT,tillage to a depth of 15 cm with no straw incorporation),straw incorporation with conventional tillage(SCT,tillage to a depth of 15 cm),inversion tillage(IT,tillage to a depth of 35 cm)and straw incorporation with inversion tillage(SIT,tillage to a depth of 35 cm).The soils were managed by inversion to a depth of 15 or 35 cm after harvest.The results show that soil organic carbon content was significantly higher and pH and bulk density were significantly lower in the 15–35 cm layer in IT and SIT than CT and SCT.Fungal abundance was higher with straw incorporation,but fungal diversity was lower in the 0–15 cm layer in SCT and SIT than in CT and IT.Path length in the bacterial network was shorter and connectivity was higher in CT+SCT than in IT+SIT,leading to a more complex ecosystem,and the fungal network had opposite patterns.The key taxa in the phylum Actinobacteriota and Ascomycota in the microbial networks changed dramatically at the genus level following inversion tillage with straw amendment,which may increase bacterial network resistance to environmental disturbances and unstable fungal networks,resulting in large changes in the fungal community involved in the decomposition of recalcitrant straw-derived C and the more efficient acquisition of limiting resources. 展开更多
关键词 soil microbiome inversion tillage conventional tillage straw amendment Haplic Chernozem Northeast China
下载PDF
Dopamine improves apple replant disease resistance by regulating physiological resilience and rhizosphere microbial community structure
4
作者 Peihua Du Yang Cao +5 位作者 Huaite Liu Jiahao Ji Wei Sun Xueying Zhang Jizhong Xu Bowen Liang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第9期3025-3044,共20页
Apple replant disease(ARD)is a complex agricultural problem caused by multiple stressors that can lead to increased reactive oxygen species(ROS)levels and limited nutrient utilization in plants.However,existing counte... Apple replant disease(ARD)is a complex agricultural problem caused by multiple stressors that can lead to increased reactive oxygen species(ROS)levels and limited nutrient utilization in plants.However,existing countermeasures cannot effectively address this challenge.Here,we used Malus hupehensis as a test organism to investigate whether the pleiotropic molecule dopamine can alleviate ARD using pot experiments.Exogenous application of 100μmol L-1 dopamine significantly promoted the growth of apple seedlings in the replanted soil,with a relative growth rate increase of 17.44%.Our results revealed two major pathways by which dopamine regulates ARD resistance in apple trees.First,dopamine effectively reduces the level of ROS and activates the expression of genes related to nitrogen(N)transport and metabolism.Among those genes,MdNLP5,MdNRT1.1,MdNLP2,MdNRT2.5,MdNLP3,MdNRT2.4,MdNADH-GAGOT,and MdFd-GAGOT were strongly regulated by dopamine.These regulatory effects promoted the uptake and utilization of soil N by the plants.Second,dopamine improved the physical and chemical properties,enhanced microbial community diversity,and promoted mutual cooperation between microbial communities in the soil.Furthermore,dopamine altered the microbial structure of rhizosphere soil(upregulating Clostridiales,Gaiellales,Sordariales and Mortierellales;downregulating Micrococcales,Longimicrobiales,Hypocreales and Cystobasidiales).Notably,dopamine significantly upregulated the abundances of Gaiella and Mortierella,both of which were positively correlated with soil urease activity,soil available N content,plant growth and N uptake.Dopamine also significantly downregulated the abundance of the plant pathogen Gibberella(by 11.71-fold)in replant soil.Our results provide insights into the mechanisms by which dopamine promotes ARD resistance,and can promote the sustainable development of the apple industry. 展开更多
关键词 continuous cropping barrier exogenous dopamine Malus hupehensis Rehd. 15N-labeling soil microbiome
下载PDF
Metagenomic approach revealed effects of forest thinning on bacterial communities in the forest soil of Mt. Janggunbong, South Korea 被引量:1
5
作者 LEE Byeong-Ju EO Soo Hyung 《Journal of Mountain Science》 SCIE CSCD 2018年第1期59-67,共9页
The soil microbiome that plays important ecological roles in mountains and forests is influenced by anthropogenic and natural causes.Human activity,particularly harvesting or thinning,affects the soil microbiome in fo... The soil microbiome that plays important ecological roles in mountains and forests is influenced by anthropogenic and natural causes.Human activity,particularly harvesting or thinning,affects the soil microbiome in forests by altering environmental conditions,such as vegetation,microclimate,and soil physicochemical properties.The purpose of this study was to investigate the effects on forest thinning on the diversity and composition of the soil bacterial community.From next-generation sequencing results of the 16S rRNA gene,we examined differences in soil bacterial diversity and community composition before and after thinning at Mt.Janggunbong,South Korea.We identified 40 phyla,103 classes,192 orders,412families,947 genera,and 3,145 species from the soil samples.Acidobacteria and Proteobacteria were the most dominant bacterial phyla in the forest soil of Mt.Janggunbong.Soil bacterial diversity measures(richness,Shannon diversity index,and evenness)at the phylum level increased after thinning,whereas species-level taxonomic richness decreased after thinning.Thinning provided new opportunities for bacterial species in Chloroflexi,Verrucomicrobia,Nitrospirae,and other nondominant bacterial taxa,especially for those not found in Mt.Janggunbong before thinning,to settle and adapt to the changing environment.Our results suggested that thinning affected the diversity and composition of soil bacterial communities in forests and mountains. 展开更多
关键词 16S rRNA gene soil microbiome Nextgeneration sequencing Acidobacteria Chloroflexi Proteobacteria
原文传递
The effect of long-term application of nitrogen-rich fertilizers on soil resistome:A study of conventional and organic cropping systems
6
作者 Alexey S.Vasilchenko Evgenii O.Burlakov +5 位作者 Darya V.Poshvina Denis S.Gruzdev Sergey V.Kravchenko Aleksandr V.Iashnikov Ning Ling Anastasia V.Vasilchenko 《Soil Ecology Letters》 CSCD 2024年第3期135-150,共16页
Metagenomic studies of various soil environments have previously revealed the widespread distribution of antibiotic resistance genes(ARGs)around the globe.In this study,we applied shotgun metagenomics to investigate d... Metagenomic studies of various soil environments have previously revealed the widespread distribution of antibiotic resistance genes(ARGs)around the globe.In this study,we applied shotgun metagenomics to investigate differences in microbial communities and resistomes in Chernozem soils that have been under long-term organic and conventional cropping practices.The organic cropping system was seeded with Triticum spelta without any fertilizer.The conventional cropping system was seeded with Tríticum durum Desf and used mineral fertilizer(NPK),that resulted in an increased amount of total and available carbon and nitrogen in soils.Across all samples,we identified a total of 21 ARG classes,among which the dominant were vancomycin,tetracycline and multidrug.Profiling of soil microbial communities revealed differences between the studied fields in the relative abundances of 14 and 53 genera in topsoil and subsoil,respectively.Correlation analysis showed significant correlations(positive and negative)among 18 genera and 6 ARGs,as well as between these ARGs and some chemical properties of soils.The analysis of metagenome-assembled genomes revealed that Nitrospirota,Thermoproteota,Actinobacteriota and Binatota phyla of archaea and bacteria serve as hosts for glycopeptide and fluoroquinolone/tetracycline ARGs.Collectively,the data obtained enrich knowledge about the consequences of human agricultural activities in terms of soil microbiome modification and highlight the role of nitrogen cycling taxa,including uncultivated genera,in the formation of soil resistome. 展开更多
关键词 soil microbiome inorganic fertilizer nitrogen cycle uncultured bacteria chemolithotrophs Binatia
原文传递
Soil metabolomics:Deciphering underground metabolic webs in terrestrial ecosystems
7
作者 Yang Song Shi Yao +6 位作者 Xiaona Li Tao Wang Xin Jiang Nanthi Bolan Charles R.Warren Trent R.Northen Scott X.Chang 《Eco-Environment & Health》 2024年第2期227-237,共11页
Soil metabolomics is an emerging approach for profiling diverse small molecule metabolites,i.e.,metabolomes,in the soil.Soil metabolites,including fatty acids,amino acids,lipids,organic acids,sugars,and volatile organ... Soil metabolomics is an emerging approach for profiling diverse small molecule metabolites,i.e.,metabolomes,in the soil.Soil metabolites,including fatty acids,amino acids,lipids,organic acids,sugars,and volatile organic compounds,often contain essential nutrients such as nitrogen,phosphorus,and sulfur and are directly linked to soil biogeochemical cycles driven by soil microorganisms.This paper presents an overview of methods for analyzing soil metabolites and the state-of-the-art of soil metabolomics in relation to soil nutrient cycling.We describe important applications of metabolomics in studying soil carbon cycling and sequestration,and the response of soil organic pools to changing environmental conditions.This includes using metabolomics to provide new insights into the close relationships between soil microbiome and metabolome,as well as responses of soil metabolome to plant and environmental stresses such as soil contamination.We also highlight the advantage of using soil metabolomics to study the biogeochemical cycles of elements and suggest that future research needs to better understand factors driving soil function and health. 展开更多
关键词 Dissolved organic matter Carbon cycling Metabolomes Extraction method soil microbiome Rhizosphere ecology
下载PDF
Combined organic-inorganic fertilization builds higher stability of soil and root microbial networks than exclusive mineral or organic fertilization 被引量:2
8
作者 Luhua Yang Renhua Sun +5 位作者 Jungai Li Limei Zhai Huiling Cui Bingqian Fan Hongyuan Wang Hongbin Liu 《Soil Ecology Letters》 CSCD 2023年第2期77-90,共14页
Plant health and performance are highly dependent on the root microbiome.The impact of agricultural management on the soil microbiome has been studied extensively.However,a comprehensive understanding of how soil type... Plant health and performance are highly dependent on the root microbiome.The impact of agricultural management on the soil microbiome has been studied extensively.However,a comprehensive understanding of how soil types and fertilization regimes affect both soil and root microbiome is still lacking,such as how fertilization regimes affect the root microbiome's stability,and whether it follows the same patterns as the soil microbiome.In this study,we carried out a longterm experiment to see how different soil types,plant varieties,and fertilizer regimens affected the soil and root bacterial communities.Our results revealed higher stability of microbial networks under combined organic-inorganic fertilization than those relied solely on inorganic or organic fertilization.The root microbiome variation was predominantly caused by total nitrogen,while the soil microbiome variation was primarily caused by pH and soil organic matter.Bacteroidetes and Firmicutes were major drivers when the soil was amended with organic fertilizer,but Actinobacteria was found to be enriched in the soil when the soil was treated with inorganic fertilizer.Our findings demonstrate how the soil and root microbiome respond to diverse fertilizing regimes,and hence contribute to a better understanding of smart fertilizer as a strategy for sustainable agriculture. 展开更多
关键词 Fertilization regime soil microbiome Root microbiome Microbial networks Network stability
原文传递
Global-scale analysis reveals distinct patterns of non-ribosomal peptide and polyketide synthase encoding genes in root and soil bacterial communities
9
作者 Barak Dror Edouard Jurkevitch Eddie Cytryn 《Soil Ecology Letters》 CAS CSCD 2023年第1期38-45,共8页
Secondary metabolites(SMs)produced by soil bacteria,for instance antimicrobials and siderophores,play a vital role in bacterial adaptation to soil and root ecosystems and can contribute to plant health.Many SMs are no... Secondary metabolites(SMs)produced by soil bacteria,for instance antimicrobials and siderophores,play a vital role in bacterial adaptation to soil and root ecosystems and can contribute to plant health.Many SMs are non-ribosomal peptides and polyketides,assembled by non-ribosomal peptides synthetase(NRPS)and polyketide synthase(PKS)and encoded by biosynthetic gene clusters(BGCs).Despite their ecological importance,little is known about the occurrence and diversity of NRPs and PKs in soil.We extracted NRPS-and PKS-encodiing BGCs from 20 publicly available soil and root-associated metagenomes and annotated them using antiSMASH-DB.We found that the overall abundance of NRPSs and PKSs is similar in both environments,however NRPSs and PKSs were significantly clustered between soil and root samples.Moreover,the majority of identified sequences were unique to either soil-or root-associated datasets and had low identity to known BGCs,suggesting their novelty.Overall,this study illuminates the huge untapped diversity of predicted SMs in soil and root microbiomes,and indicates presence of specific SMs,which may play a role in inter-and intra-bacteriial interactions in root ecosystems. 展开更多
关键词 Secondary metabolites Plant-microbe interactions Non-ribosomal peptides POLYKETIDES Rhizosphere microbiome soil microbiome
原文传递
Soil biofilms:microbial interactions,challenges,and advanced techniques for ex-situ characterization 被引量:7
10
作者 Peng Cai Xiaojie Sun +5 位作者 Yichao Wu Chunhui Gao Monika Mortimer Patricia A.Holden Marc Redmile-Gordon Qiaoyun Huang 《Soil Ecology Letters》 CAS 2019年第3期85-93,共9页
Soil is inhabited by a myriad of microorganisms,many of which can form supracellular structures,called biofilms,comprised of surface-associated microbial cells embedded in hydrated extracellular polymeric substance th... Soil is inhabited by a myriad of microorganisms,many of which can form supracellular structures,called biofilms,comprised of surface-associated microbial cells embedded in hydrated extracellular polymeric substance that facilitates adhesion and survival.Biofilms enable intensive inter-and intra-species interactions that can increase the degradation efficiency of soil organic matter and materials commonly regarded as toxins.Here,we first discuss organization,dynamics and properties of soil biofilms in the context of traditional approaches to probe the soil microbiome.Social interactions among bacteria,such as cooperation and competition,are discussed.We also summarize different biofilm cultivation devices in combination with optics and fluorescence microscopes as well as sequencing techniques for the study of soil biofilms.Microfluidic platforms,which can be applied to mimic the complex soil environment and study microbial behaviors at the microscale with highthroughput screening and novel measurements,are also highlighted.This review aims to highlight soil biofilm research in order to expand the current limited knowledge about soil microbiomes which until now has mostly ignored biofilms as a dominant growth form. 展开更多
关键词 soil microbiome soil biofilm Microbial interactions Micro-scale environments Biofilm cultivation devices Microfluidic techniques
原文传递
Soil protists: An untapped microbial resource of agriculture and environmental importance 被引量:3
11
作者 Komal A.CHANDARANA Natarajan AMARESAN 《Pedosphere》 SCIE CAS CSCD 2022年第1期184-197,共14页
Protists are essential components of soil biodiversity and ecosystem functioning. They play a vital role in the microbial food web as consumers of bacteria, fungi, and other small eukaryotes and are also involved in m... Protists are essential components of soil biodiversity and ecosystem functioning. They play a vital role in the microbial food web as consumers of bacteria, fungi, and other small eukaryotes and are also involved in maintaining soil fertility and plant productivity. Protists also contribute to regulating and shaping the bacterial community in terrestrial ecosystems via specific prey spectra. They play a role in plant growth promotion and plant health improvement,mostly via nutrient cycling, grazing, and the activation of bacterial genes required for plant growth and phytopathogen suppression. Thus, protists may prove to be a useful inoculant as biofertilizer and biocontrol agent. They can also be applied as model organisms as bioindicators of soil health. Despite their usefulness and essentiality, they are often forgotten and under-researched components of the soil microbiome, as most of our research focuses on bacteria and fungi. In this review, we provide an overview of the role of protists in plant productivity and plant health management and in shifts in soil bacterial community composition, as well as their roles as bioindicator. We also discuss the perspectives of knowledge gaps and future prospects to further improve soil biology.More research in soil protistology will provide insights into sustainable agriculture and environmental health alongside the study of bacteria and fungi. 展开更多
关键词 bacterial community BIOINDICATOR microbial food web plant health plant productivity soil biodiversity soil health soil microbiome
原文传递
Enrichment of bacteria involved in the nitrogen cycle and plant growth promotion in soil by sclerotia of rice sheath blight fungus 被引量:2
12
作者 Mirza Abid Mehmood Yanping Fu +3 位作者 Huizhang Zhao Jiasen Cheng Jiatao Xie Daohong Jiang 《Stress Biology》 2022年第1期299-311,共13页
Rice sheath blight pathogen,Rhizoctonia solani,produces numerous sclerotia to overwinter.As a rich source of nutrients in the soil,sclerotia may lead to the change of soil microbiota.For this purpose,we amended the sc... Rice sheath blight pathogen,Rhizoctonia solani,produces numerous sclerotia to overwinter.As a rich source of nutrients in the soil,sclerotia may lead to the change of soil microbiota.For this purpose,we amended the sclerotia of R.solani in soil and analyzed the changes in bacterial microbiota within the soil at different time points.At the phyla level,Proteobacteria,Acidobacteria,Bacteroidetes,Actinobacteria,Chloroflexi and Firmicutes showed varied abundance in the amended soil samples compared to those in the control.An increased abundance of ammonia-oxidizing bacterium(AOB)Nitrosospira and Nitrite oxidizing bacteria(NOB)i.e.,Nitrospira was observed,where the latter is reportedly involved in the nitrifier denitrification.Moreover,Thiobacillus,Gemmatimonas,Anaeromyxobacter and Geobacter,the vital players in denitrification,N2O reduction and reductive nitrogen transformation,respectively,depicted enhanced abundance in R.solani sclerotia-amended samples.Furthermore,asymbiotic nitrogen-fixing bacteria,notably,Azotobacter as well as Microvirga and Phenylobacterium with nitrogen-fixing potential also enriched in the amended samples compared to the control.Plant growth promoting bacteria,such as Kribbella,Chitinophaga and Flavisolibacter also enriched in the sclerotia-amended soil.As per our knowledge,this study is of its kind where pathogenic fungal sclerotia activated microbes with a potential role in N transformation and provided clues about the ecological functions of R.solani sclerotia on the stimulation of bacterial genera involved in different processes of N-cycle within the soil in the absence of host plants. 展开更多
关键词 Rice sheath blight Rhizoctonia solani SCLEROTIA Reductive nitrogen transformation Nitrogen fixation soil microbiome
下载PDF
Rhizosphere immunity: targeting the underground for sustainable plant health management 被引量:13
13
作者 Zhong WEI Vill-Petri FRIMAN +3 位作者 Thomas POMMIER Stefan GEISEN Alexandre JOUSSET Qirong SHEN 《Frontiers of Agricultural Science and Engineering》 2020年第3期317-328,共12页
Managing plant health is a great challenge formodern food production and is further complicated by thelack of common ground between the many disciplinesinvolved in disease control. Here we present the concept ofrhizos... Managing plant health is a great challenge formodern food production and is further complicated by thelack of common ground between the many disciplinesinvolved in disease control. Here we present the concept ofrhizosphere immunity, in which plant health is consideredas an ecosystem level property emerging from networks ofinteractions between plants, microbiota and the surround-ing soil matrix. These interactions can potentially extendthe innate plant immune system to a point where therhizosphere immunity can fulfil all four core functions ofafull immune system: pathogen prevention, recognition,response and homeostasis. We suggest that consideringplant health from a meta-organism perspective will help indeveloping multidisciplinary pathogen management stra-tegies that focus on steering the whole plant-microbe-soilnetworks instead of individual components. This might beachieved by bringing together the latest discoveries inphytopathology, microbiome research, soil science andagronomy to pave the way toward more sustainable andproductive agriculture. 展开更多
关键词 rthizosphere soil microbiome plant immunity microbial ecology plant health soilborme pathogens
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部