期刊文献+
共找到9,836篇文章
< 1 2 250 >
每页显示 20 50 100
Effects of native and invasive Prosopis species on topsoil physiochemical properties in an arid riparian forest of Hormozgan Province,Iran 被引量:1
1
作者 Maryam MOSLEHI JOUYBARI Asgahr BIJANI +2 位作者 Hossien PARVARESH Ross SHACKLETON Akram AHMADI 《Journal of Arid Land》 SCIE CSCD 2022年第10期1099-1108,共10页
Biological invasions can alter soil properties within the range of their introduced,leading to impacts on ecosystem services,ecosystem functions,and biodiversity.To better understand the impacts of biological invasion... Biological invasions can alter soil properties within the range of their introduced,leading to impacts on ecosystem services,ecosystem functions,and biodiversity.To better understand the impacts of biological invasions on soil,we compared topsoil physiochemical properties at sites with invasive alien tree species(Prosopis juliflora),native tree species(Prosopis cineraria,Acacia tortilis,and Acacia ehrenbergiana),and mixed tree species in Hormozgan Province of Iran in May 2018.In this study,we collected 40 soil samples at a depth of 10 cm under single tree species,including P.juliflora,P.cineraria,A.tortilis,and A.ehrenbergiana,as well as under mixed tree species.The results showed that organic matter,moisture,potassium,calcium,nitrogen,and magnesium in topsoil at sites with A.tortilis and A.ehrenbergiana growing in combination with P.cineraria were higher than that at sites where P.juliflora was present(P<0.05).Sodium at sites with A.tortilis and A.ehrenbergiana growing in combination with P.cineraria and P.juliflora was lower as compared to that at sites with just A.tortilis and A.ehrenbergiana.Electrical conductivity was lower at sites with A.tortilis and A.ehrenbergiana growing in combination with P.cineraria,and it was higher at sites with mixed Acacia and P.juliflora trees.Based on the generally more positive effect of native Acacia and P.cineraria on topsoil physiochemical properties as compared to the P.julifora,afforestation with native tree species is preferable for soil restoration.In addition,due to the negative effects of P.julifora on soil properties,P.julifora spread should be better managed. 展开更多
关键词 Prosopis juliflora Prosopis cineraria tree species invasion topsoil physiochemical properties Iran
下载PDF
Soil Physico-Chemical Properties and Different Altitudes Affect Arbuscular Mycorrhizal Fungi Abundance and Colonization in Cacao Plantations of Cameroon
2
作者 Franklin Tounkam Ketchiemo Beaulys Fotso +4 位作者 Astride Stéphanie Mouafi Djabou Victor Jos Eyamo Evina Japhet Youri Essambita Franck Maxime Ewane Tang Nicolas Niemenak 《American Journal of Plant Sciences》 CAS 2024年第2期57-82,共26页
This study aims to investigate the abundance of AMF according to soil properties and altitudes in different cacao plantations of Cameroon. Physico-chemical analyses were made on soil samples collected from three agro-... This study aims to investigate the abundance of AMF according to soil properties and altitudes in different cacao plantations of Cameroon. Physico-chemical analyses were made on soil samples collected from three agro-ecological zones. Soil samples were also used to evaluate directly the AMF abundance following the various altitudes and after trapping by sorghum plant. The results showed that soil properties, AMF spore abundances and colonization fluctuated significantly at different altitudes. The most represented texture was sandy loam. The bimodal zone presented a homogeneous texture (sandy loam) in all its localities. Cacao soil chemical characteristics showed that, the highest nitrogen rate (0.47%;p 0.05, Scott-Knott test) was recorded at Melong in a monomodal zone while Tonga in the Western highlands displayed the lowest rate (0.13%). Soil P concentration was significantly high in monomodal zones (Mbanga and Melong). Soil pH level indicated that the soil from Tonga in the Western highlands was neutral (pH = 6.67), and soils of other localities under study were acidic with the lowest (4.75) pH level recorded at Melong in a monomodal zone. In soil samples, the highest spore density (1.03 spores/g soil) was observed at Ntui in Bimodal zone, while the lowest spore density (0.26 spores/g soil) was observed at Bafang in the Western highlands. Root colonization showed that the sample from Bokito in a bimodal zone displayed the best frequency of mycorrhization (86.11%) while the sample from Bafang in the Western highlands recorded the lowest (27.11%). The PCA analysis highlighted that available phosphorus, pH and altitude all strongly correlated with AMF root colonization ability and can be used as a predictor of AMF colonization ability in cacao rhizosphere. 展开更多
关键词 Agroecological Zone Altitude Variations Arbuscular Mycorrhizal Fungi soil properties Theobroma cacao
下载PDF
Effects of site preparation methods on soil physical properties and outplanting success of coniferous seedlings in boreal forests
3
作者 Aleksey S.Ilintsev Elena N.Nakvasina Alexander P.Bogdanov 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第2期70-80,共11页
This study assessed the effect of patch scarification and mounding on the physical properties of the root layer and the success of tree planting in various types of forests.This study was conducted on 12 forest sites ... This study assessed the effect of patch scarification and mounding on the physical properties of the root layer and the success of tree planting in various types of forests.This study was conducted on 12 forest sites in taiga forests of the European part of Russia.A total of 54 plots were set up to assess seedling survival;root collar diameter,height,and heigh increment were measured for 240 seedlings to assess growth.In the rooting layer,240 soil samples were taken to determine physical properties.The study showed that soil treatment methods had no effect on bulk density and total porosity in Cladina sites.However,reduced soil moisture was noted,particularly in mounds,resulting in increased aeration.In Myrtillus sites,there were increased bulk density,reduced soil moisture,and total porosity in the mounds.Mounding treatment in Polytrichum sites resulted in reduced soil moisture and increased aeration porosity.In the Myrtillus and Polytrichum sites,patch scarification had no effects on physical properties.In Polytrichum sites,survival rates,heights,and heigh increments of bareroot Norway spruce seedlings in mounds were higher than in patches;however,the same did not apply to diameter.In Cladina and Myrtillus sites,there was no difference in growth for bareroot and containerised seedlings with different soil treatments.Growing conditions and soil types should be considered when applying different soil treatment methods to ensure high survival rates and successful seedling growth. 展开更多
关键词 Boreal forests Mechanical site preparation Patch scarification MOUNDING soil properties Containerised seedlings Bareroot seedlings
下载PDF
Impact of Different Rates of Nitrogen Supplementation on Soil PhysicochemicalProperties and Microbial Diversity in Goji Berry
4
作者 Xiaojie Liang Wei An +4 位作者 Yuekun Li Yajun Wang Xiaoya Qin Yanhong Cui Shuchai Su 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第3期467-486,共20页
Goji berry(Lycium barbarum L.)is substantially dependent on nitrogen fertilizer application,which can signifi-cantly enhance fruit yield and Goji berry industrial development in Ningxia,China.This study aimed to analyz... Goji berry(Lycium barbarum L.)is substantially dependent on nitrogen fertilizer application,which can signifi-cantly enhance fruit yield and Goji berry industrial development in Ningxia,China.This study aimed to analyze the functions of differential nitrogen application rates including low(N1),medium(N2),and high(N3)levels in soil microbial community structure(bacterial and fungal)at 2 diverse soil depths(0-20,20-40 cm)through high-throughput sequencing technology by targeting 16S RNA gene and ITS1&ITS2 regions.All the observed physicochemical parameters exhibited significant improvement(p<0.05)with increased levels of nitrogen and the highest values for most parameters were observed at N2.However,pH decreased(p<0.05)gradually.The alpha and beta diversity analyses for bacterial and fungal communities’metagenome displayed more similarities than differences among all groups.The top bacterial and fungal phyla and genera suggested no obvious(p>0.05)differences among three group treatments(N1,N2,and N3).Furthermore,the functional enrichment analysis demonstrated significant(p<0.05)enrichment of quorum sensing,cysteine and methionine metabolism,and transcriptional machinery for bacterial communities,while various saprotrophic functional roles for fungal communities.Conclusively,moderately reducing the use of N-supplemented fertilizers is conducive to increasing soil nitrogen utilization rate,which can contribute to sustainable agriculture practices through improved soil quality,and microbial community structure and functions. 展开更多
关键词 Goji berry production Ningxia China differential nitrogen supplementation rates 16S RNA gene and IT1&IT2 region sequencing soil physicochemical properties
下载PDF
Digital mapping of soil physical and mechanical properties using machine learning at the watershed scale
5
作者 Mohammad Sajjad GHAVAMI Shamsollah AYOUBI +1 位作者 Mohammad Reza MOSADDEGHI Salman Naimi 《Journal of Mountain Science》 SCIE CSCD 2023年第10期2975-2992,共18页
Knowledge about the spatial distribution of the soil physical and mechanical properties is crucial for soil management,water yield,and sustainability at the watershed scale;however,the lack of soil data hinders the ap... Knowledge about the spatial distribution of the soil physical and mechanical properties is crucial for soil management,water yield,and sustainability at the watershed scale;however,the lack of soil data hinders the application of this tool,thus urging the need to estimate soil properties and consequently,to perform the spatial distribution.This research attempted to examine the proficiency of three machine learning methods(RF:Random Forest;Cubist:Regression Tree;and SVM:Support Vector Machine)to predict soil physical and mechanical properties,saturated hydraulic conductivity(Ks),Cohesion measured by fall-cone at the saturated(Psat)and dry(Pdry)states,hardness index(HI)and dry shear strength(SS)by integrating environmental variables and soil features in the Zayandeh-Rood dam watershed,central Iran.To determine the best combination of input variables,three scenarios were examined as follows:scenarioⅠ,terrain attributes derivative from a digital elevation model(DEM)+remotely sensed data;scenarioⅡ,covariates of scenarioⅠ+selected climatic data and some thematic maps;scenarioⅢ,covariates in scenarioⅡ+intrinsic soil properties(Clay,Silt,Sand,bulk density(BD),soil organic matter(SOM),calcium carbonate equivalent(CCE),mean weight diameter(MWD)and geometric weight diameter(GWD)).The results showed that for Ks,Psat Pdry and SS,the best performance was found by the RF model in the third scenario,with R2=0.53,0.32,0.31 and 0.41,respectively,while for soil hardness index(HI),Cubist model in the third scenario with R2=0.25 showed the highest performance.For predicting Ks and Psat,soil characteristics(i.e.clay and soil SOM and BD),and land use were the most important variables.For predicting Pdry,HI,and SS,some topographical characteristics(Valley depth,catchment area,mltiresolution of ridge top flatness index),and some soil characteristics(i.e.clay,SOM and MWD)were the most important input variables.The results of this research present moderate accuracy,however,the methodology employed provides quick and costeffective information serving as the scientific basis for decision-making goals. 展开更多
关键词 Machine learning soil physical property soilmechanical property Saturatedhydraulic conductivity soil cohesion soil shear strength.
原文传递
Leguminosae plants play a key role in affecting soil physical-chemical and biological properties during grassland succession after farmland abandonment in the Loess Plateau,China
6
作者 SUN Lin YU Zhouchang +5 位作者 TIAN Xingfang ZHANG Ying SHI Jiayi FU Rong LIANG Yujie ZHANG Wei 《Journal of Arid Land》 SCIE CSCD 2023年第9期1107-1128,共22页
Leguminosae are an important part of terrestrial ecosystems and play a key role in promoting soil nutrient cycling and improving soil properties.However,plant composition and species diversity change rapidly during th... Leguminosae are an important part of terrestrial ecosystems and play a key role in promoting soil nutrient cycling and improving soil properties.However,plant composition and species diversity change rapidly during the process of succession,the effect of leguminosae on soil physical-chemical and biological properties is still unclear.This study investigated the changes in the composition of plant community,vegetation characteristics,soil physical-chemical properties,and soil biological properties on five former farmlands in China,which had been abandoned for 0,5,10,18,and 30 a.Results showed that,with successional time,plant community developed from annual plants to perennial plants,the importance of Leguminosae and Asteraceae significantly increased and decreased,respectively,and the importance of grass increased and then decreased,having a maximum value after 5 a of abandonment.Plant diversity indices increased with successional time,and vegetation coverage and above-and below-ground biomass increased significantly with successional time after 5 a of abandonment.Compared with farmland,30 a of abandonment significantly increased soil nutrient content,but total and available phosphorus decreased with successional time.Changes in plant community composition and vegetation characteristics not only change soil properties and improve soil physical-chemical properties,but also regulate soil biological activity,thus affecting soil nutrient cycling.Among these,Leguminosae have the greatest influence on soil properties,and their importance values and community composition are significantly correlated with soil properties.Therefore,this research provides more scientific guidance for selecting plant species to stabilize soil ecosystem of farmland to grassland in the Loess Plateau,China. 展开更多
关键词 secondary succession LEGUMINOSAE plant diversity plant community composition soil physical-chemical properties soil biological properties
下载PDF
Soil seed bank is affected by transferred soil thickness and properties in the reclaimed coal mine in the Qilian Mountains, China
7
作者 YANG Jingyi LUO Weicheng +3 位作者 ZHAO Wenzhi LIU Jiliang WANG Dejin LI Guang 《Journal of Arid Land》 SCIE CSCD 2023年第12期1529-1543,共15页
Reclamation of lands abandoned after mining in mountain areas is critical to erosion control,safety from landslides,and ecological protection of mountain ecosystems.However,little is known about alpine coal mine recla... Reclamation of lands abandoned after mining in mountain areas is critical to erosion control,safety from landslides,and ecological protection of mountain ecosystems.However,little is known about alpine coal mine reclamation using the soil seed bank as a potential source for revegetation.We collected samples of persistent soil seed bank for germination experiments from nine reclaimed sites with different soil cover thicknesses and from six control sites in the Qilian Mountains of China.Soil properties of each site were determined(including soil water content,soil available potassium,soil available phosphorus,soil total nitrogen,pH,soil organic matter,soil total phosphorus,and soil total potassium,and soil alkali-hydrolyzable nitrogen),and the relationships of the characteristics of the soil seed bank with soil cover thickness and soil properties were examined.The results showed that the density,number of species,and diversity of the topsoil seed bank were significantly correlated with soil cover thickness,and all increased with the increment of soil cover thickness.Soil cover thickness controlled the soil seed bank by influencing soil properties.With the increase in soil cover thickness,soil properties(e.g.,soil organic matter,soil total nitrogen,etc.)content increased while soil pH decreased.The soil seed bank had the potential to restored the pre-mining habitat at reclaimed sites with approximately 20-cm soil cover thickness.Soil properties of reclaimed sites were lower than that of natural sites.The relationship between the soil seed bank and soil cover thickness determined in this study provides a foundation for improving reclamation measures used in coal mines,as well as for the management and monitoring of reclaimed areas. 展开更多
关键词 soil seed bank soil cover thickness species composition soil properties Qilian Mountains
下载PDF
Influence of different soil properties on the failure behavior of deposit slope under earthquake after rainfall
8
作者 YANG Bing HOU Jiang-rong +1 位作者 ZHOU Zi-hong GOU Jin-cheng 《Journal of Mountain Science》 SCIE CSCD 2023年第1期65-77,共13页
In this study,the influence of soil properties on the failure behavior and mechanism of slope under earthquake after rainfall was studied with shaking table test in the laboratory,in which the failure process of slope... In this study,the influence of soil properties on the failure behavior and mechanism of slope under earthquake after rainfall was studied with shaking table test in the laboratory,in which the failure process of slope and instant responses of water content and pore water pressure were tested.Based on the principle of similarity,a model test was designed.The experimental results showed that soil properties exhibit significant influence on failure mode and failure mechanism of slope.Local flowslide,local failure,and creep flowslide failure modes appear in the slope exposed to only rainfall.However,under earthquake after rainfall,the other three failure modes occur,i.e.,local slip failure,overall slip failure,and shallow scouring and creep flowslide failure.The spatial distribution of water content and pore water pressure are the two key factors leading to slope failure.Furthermore,due to the difference of permeability,the soil properties not only affect the spatial distribution of water content of the slope after rainfall,resulting in the peak pore water pressure which occurs mainly near the foot of the slope and near the bedrock interface in the middle and lower parts of the slope,but also affect the dissipation of excess pore water pressure in the process of earthquake.Finally,it is discovered that different types of soil lead to significant differences in the peak acceleration of slope failure.The critical acceleration of slope with coarse-grained soil is greater than that of slope with fine-grained soil.The critical acceleration of slope failure shows a close relationship with soil properties. 展开更多
关键词 Failure mode Failure mechanism Deposit slope soil properties Earthquake after rainfall
原文传递
Mechanical properties of dredged soil reinforced by xanthan gum and fibers
9
作者 Dianzhi Feng Bing Liang +4 位作者 Xingxing He Fu Yi Jianfei Xue Yong Wan Qiang Xue 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第8期2147-2157,共11页
Biopolymers have become popular in geotechnical engineering as they provide a carbon-neutral alternative for soil solidification.Xanthan gum(XG)and jute fiber(JF)were selected to solidify the Yellow River dredged soil... Biopolymers have become popular in geotechnical engineering as they provide a carbon-neutral alternative for soil solidification.Xanthan gum(XG)and jute fiber(JF)were selected to solidify the Yellow River dredged soil.The mechanical behavior of solidified dredged soil(SDS)was investigated using a series of uniaxial compression and splitting tension tests at different XG and JF contents and fiber lengths.The results indicate that on the 28th day,the unconfined compressive strength(UCS)values of SDS samples reached 2.83 MPa and splitting tensile strength(STS)of 0.763 MPa at an XG content of 1.5%.When the JF content was greater than 0.9%,the STS of the SDS samples decreased.This is because that the large fiber content weakened the cementation ability of XG.The addition of JF can significantly increase the strain at peak strength of SDS samples.There is a linear relationship between the UCS and STS of the dredged soils solidified by XG and JF.Microanalysis shows that the strength of SDS samples was improved mainly via the cementation of XG itself and the network structure formed by JF with soil particles.The dredged soil reinforced by XG and JF shows better mechanical performance and has great potential for application. 展开更多
关键词 Solidified dredged soil(SDS) Xanthan gum(XG) Jute fiber(JF) Mechanical properties
下载PDF
Soil respiration responses to soil physiochemical properties in urban different green-lands:A case study in Hefei,China 被引量:1
10
作者 Xiao Tao Jun Cui +2 位作者 Yunze Dai Zefu Wang Xiaoniu Xu 《International Soil and Water Conservation Research》 SCIE CSCD 2016年第3期224-229,共6页
Soil respiration(RS)is an important carbon budget in urban ecosystem.In order to better understand the limiting factors affecting urban soil respiration,we measured RS,soil temperature,soil moisture content,soil organ... Soil respiration(RS)is an important carbon budget in urban ecosystem.In order to better understand the limiting factors affecting urban soil respiration,we measured RS,soil temperature,soil moisture content,soil organic carbon(SOC),nitrogen(N),C/N,dissolved organic carbon(DOC),microbial biomass carbon(MBC),NO_(3)^(-)-N,NH4þ-N,P and fine root biomass from twelve sites of four green-land types(campus green-land,park green-land,residential green-land and factory green-land)for two years in built-up areas of Hefei,China.The results showed that average annual RS was significantly lower in the residential green-land(1.35μmol m^(-2) s^(-1))than in the campus(2.64μmol m^(-2) s^(-1))and park(2.51μmol m^(-2) s^(-1))green-lands.RS positively increased with soil temperature at the range of 2.01–31.26℃,and Q_(10) values ranged from 1.48 to 1.65 in the four types of green-lands.Soil moisture(18–25%)showed significantly positive correlation with soil respiration(P<0.01).When precipitation occurred frequently in wet summer,soil moisture served as the dominant control on R_(S) variations.R_(S) was positively related with SOC,NO_(3)^(-)-N,P and fine root biomass(diameter <2 mm),while negatively correlated with DOC at 0–10 cm depth.Our results indicate that decreasing R_(S) may be an optional way to increase carbon sequestration potential for urban ecosystem,and this can be achieved by regulating green-land types and applying appropriate soil nutrients maintenance practices. 展开更多
关键词 Urban soil soil respiration Green-land type soil properties Environmental factors
原文传递
Effects of Different Planting Years on Physicochemical Properties and Enzyme Activities in Soil of Rice-Cherry Tomato Rotation
11
作者 Xiao Deng Chunyuan Wu +2 位作者 Yi Li Huadong Tan Jiancheng Su 《Open Journal of Ecology》 2023年第6期334-344,共11页
Crop rotation periodicity has always been one of the research focuses currently. In this study, the physicochemical properties, nutrient contents and enzyme activities were investigated in soils from rice-cherry tomat... Crop rotation periodicity has always been one of the research focuses currently. In this study, the physicochemical properties, nutrient contents and enzyme activities were investigated in soils from rice-cherry tomato rotation for one year (1a), three years (3a), five years (5a), seven years (7a) and ten years (10a), respectively. The major objective was to analyze the optimal rotation years of rice-cherry tomato from soil perspective, so as to provide theoretical basis for effectively avoiding continuous cropping obstacles of cherry tomato via studying the response characteristics of soil physicochemical properties, nutrient contents and enzyme activities to planting years of rice-cherry tomato rotation system. The results were as follows: 1) Soil pH value was increased year by year during 1a to 5a, reached the highest value 5.32 at 5a. However, soil acidity was sharply enhanced during 7a to 10a (P P •kg<sup>-1</sup> at 5a. 3) The content of soil available phosphorus was increased year by year with increasing of crop rotation years, and increased by 110% to 173% during 3a to 10a (P P P < 0.05). In conclusion, long-term single rotation pattern of rice-cherry tomato would aggravate soil acidification, prompt soil nutrient imbalance and reduce soil enzyme activity. 5a to 7a would be the appropriate rotation period for rice-cherry tomato, or else it would reduce soil quality, resulting in a new continuous cropping obstacle of cherry tomato. 展开更多
关键词 Rice-Cherry Tomato Rotation Planting Years soil Physicochemical properties Enzyme Activity
下载PDF
GIS-Based Assessment of Soil Chemical and Physical Properties as a Basis for Land Reclamation in Toshka Area, Aswan, EGYPT
12
作者 Ahmed A. M. Awad Mostafa M. A. Al-Soghir 《Open Journal of Geology》 2023年第7期697-719,共23页
The accurate assessment of soil properties is a crucial factor for composing and implementing reclamation plans. The main objective of this study was to evaluate soil chemical and physical properties and calculate the... The accurate assessment of soil properties is a crucial factor for composing and implementing reclamation plans. The main objective of this study was to evaluate soil chemical and physical properties and calculate the chemical and fertility index for assisting land reclamation in Toshka area. The Toshka area is located between latitudes 31°32'N and 31°36'N and longitudes 32°40'E and 32°60'E. GIS was used to select 16 sites. The results revealed the soil has undesirable characteristics. The soil pH ranged from slightly alkaline to moderately alkaline. Furthermore, it was characterized as saline (with a ECe of 4.65 - 11.45 dS⋅m<sup>−1</sup>) and moderately calcareous soil (with CaCO<sub>3</sub> at 11.85% - 17.20%). The soil had a low soil organic matter content which did not exceed 0.18%. The soil was dominated by a sandy loam texture (62.50%) followed by a sandy clay loam texture (18.75%). The bulk density, total soil porosity and saturated hydraulic conductivity values varied with 1.38 - 1.55 Mg⋅cm<sup>−3</sup>, 41.85% - 48.45% and 1.20 - 3.34 cm⋅h<sup>−1</sup>, respectively. The chemical index ranged from low to moderate quality. The correlations between the parameters osculated between negative and positive. Therefore, the soil may be reclaimed if the soil properties are improved and crop selection is optimized for this soil. 展开更多
关键词 Land Reclamation soil Chemical and Physical properties Chemical Quality Index Fertility Quality Index
下载PDF
The competition between Bidens pilosa and Setaria viridis alters soil microbial composition and soil ecological function
13
作者 Qiao Li Jianying Guo +1 位作者 Han Zhang Mengxin Zhao 《Journal of Integrative Agriculture》 SCIE CSCD 2024年第1期267-282,共16页
Bidens pilosa is recognized as one of the major invasive plants in China.Its invasion has been associated with significant losses in agriculture,forestry,husbandry,and biodiversity.Soil ecosystems play an important ro... Bidens pilosa is recognized as one of the major invasive plants in China.Its invasion has been associated with significant losses in agriculture,forestry,husbandry,and biodiversity.Soil ecosystems play an important role in alien plant invasion.Microorganisms within the soil act as intermediaries between plants and soil ecological functions,playing a role in regulating soil enzyme activities and nutrient dynamics.Understanding the interactions between invasive plants,soil microorganisms,and soil ecological processes is vital for managing and mitigating the impacts of invasive species on the environment.In this study,we conducted a systematic analysis focusing on B.pilosa and Setaria viridis,a common native companion plant in the invaded area.To simulate the invasion process of B.pilosa,we constructed homogeneous plots consisting of B.pilosa and S.viridis grown separately as monocultures,as well as in mixtures.The rhizosphere and bulk soils were collected from the alien plant B.pilosa and the native plant S.viridis.In order to focus on the soil ecological functional mechanisms that contribute to the successful invasion of B.pilosa,we analyzed the effects of B.pilosa on the composition of soil microbial communities and soil ecological functions.The results showed that the biomass of B.pilosa increased by 27.51% and that of S.viridis was significantly reduced by 66.56%.The organic matter contents in the bulk and rhizosphere soils of B.pilosa were approximately 1.30 times those in the native plant soils.The TN and NO_(3)^(-)contents in the rhizosphere soil of B.pilosa were 1.30 to 2.71 times those in the native plant soils.The activities of acid phosphatase,alkaline phosphatase,and urease in the rhizosphere soil of B.pilosa were 1.98-2.25 times higher than in the native plant soils.Using high-throughput sequencing of the16S rRNA gene,we found that B.pilosa altered the composition of the soil microbial community.Specifically,many genera in Actinobacteria and Proteobacteria were enriched in B.pilosa soils.Further correlation analyses verified that these genera had significantly positive relationships with soil nutrients and enzyme activities.Plant biomass,soil p H,and the contents of organic matter,TN,NO_(3)^(-),TP,AP,TK,and AK were the main factors affecting soil microbial communities.This study showed that the invasion of B.pilosa led to significant alterations in the composition of the soil microbial communities.These changes were closely linked to modifications in plant traits as well as soil physical and chemical properties.Some microbial species related to C,N and P cycling were enriched in the soil invaded by B.pilosa.These findings provide additional support for the hypothesis of soil-microbe feedback in the successful invasion of alien plants.They also offer insights into the ecological mechanism by which soil microbes contribute to the successful invasion of B.pilosa.Overall,our research contributes to a better understanding of the complex interactions between invasive plants,soil microbial communities,and ecosystem dynamics. 展开更多
关键词 plant invasion Bidens pilosa soil microbial composition soil properties soil enzyme activities
下载PDF
Effects of land-use patterns on soil microbial diversity and composition in the Loess Plateau,China
14
作者 ZHANG Jian GUO Xiaoqun +2 位作者 SHAN Yujie LU Xin CAO Jianjun 《Journal of Arid Land》 SCIE CSCD 2024年第3期415-430,共16页
In the Loess Plateau of China,land-use pattern is a major factor in controlling underlying biological processes.Additionally,the process of land-use pattern was accompanied by abandoned lands,potentially impacting soi... In the Loess Plateau of China,land-use pattern is a major factor in controlling underlying biological processes.Additionally,the process of land-use pattern was accompanied by abandoned lands,potentially impacting soil microbe.However,limited researches were conducted to study the impacts of land-use patterns on the diversity and community of soil microorganisms in this area.The study aimed to investigate soil microbial community diversity and composition using high-throughput deoxyribonucleic acid(DNA)sequencing under different land-use patterns(apricot tree land,apple tree land,peach tree land,corn land,and abandoned land).The results showed a substantial difference(P<0.050)in bacterial alpha-diversity and beta-diversity between abandoned land and other land-use patterns,with the exception of Shannon index.While fungal beta-diversity was not considerably impacted by land-use patterns,fungal alpha-diversity indices varied significantly.The relative abundance of Actinobacteriota(34.90%),Proteobacteria(20.65%),and Ascomycota(77.42%)varied in soils with different land-use patterns.Soil pH exerted a dominant impact on the soil bacterial communities'composition,whereas soil available phosphorus was the main factor shaping the soil fungal communities'composition.These findings suggest that variations in land-use pattern had resulted in changes to soil properties,subsequently impacting diversity and structure of microbial community in the Loess Plateau.Given the strong interdependence between soil and its microbiota,it is imperative to reclaim abandoned lands to maintain soil fertility and sustain its function,which will have significant ecological service implications,particularly with regards to soil conservation in ecologically vulnerable areas. 展开更多
关键词 abandoned lands land-use pattern soil property diversity of soil microbe soil microbial community
下载PDF
Effects of long-term fencing on soil microbial community structure and function in the desert steppe,China
15
作者 PAN Yaqing KANG Peng +2 位作者 QU Xuan RAN Yichao LI Xinrong 《Journal of Arid Land》 SCIE CSCD 2024年第3期431-446,共16页
One of the goals of grazing management in the desert steppe is to improve its ecosystem.However,relatively little is known about soil microbe communities in the desert steppe ecosystem under grazing management.In this... One of the goals of grazing management in the desert steppe is to improve its ecosystem.However,relatively little is known about soil microbe communities in the desert steppe ecosystem under grazing management.In this study,we investigated the diversity and aboveground biomass of Caragana korshinskii Kom.shrub communities in long-term fencing and grazing areas,combined with an analysis of soil physical-chemical properties and genomics,with the aim of understanding how fence management affects plant-soil-microbial inter-relationships in the desert steppe,China.The results showed that fence management(exclosure)increased plant diversity and aboveground biomass in C.korshinskii shrub area and effectively enhanced soil organic carbon(233.94%),available nitrogen(87.77%),and available phosphorus(53.67%)contents.As well,the Shannon indices of soil bacteria and fungi were greater in the fenced plot.Plant-soil changes profoundly affected the alpha-and beta-diversity of soil bacteria.Fence management also altered the soil microbial community structure,significantly increasing the relative abundances of Acidobacteriota(5.31%-8.99%),Chloroflexi(3.99%-5.58%),and Glomeromycota(1.37%-3.28%).The soil bacterial-fungal co-occurrence networks under fence management had higher complexity and connectivity.Based on functional predictions,fence management significantly increased the relative abundance of bacteria with nitrification and nitrate reduction functions and decreased the relative abundance of bacteria with nitrate and nitrite respiration functions.The relative abundances of ecologically functional fungi with arbuscular mycorrhizal fungi,ectomycorrhizal fungi,and saprotrophs also significantly increased under fence management.In addition,the differential functional groups of bacteria and fungi were closely related to plant-soil changes.The results of this study have significant positive implications for the ecological restoration and reconstruction of dry desert steppe and similar areas. 展开更多
关键词 desert steppe fence management Caragana korshinskii soil physical-chemical property soil microorganism
下载PDF
Re-Examining Field-Surveyed Variations in Elevation and Soil Properties with a 1-m Resolution LiDAR-Generated DEM
16
作者 Kamille Lemieux Paul A. Arp 《Open Journal of Soil Science》 2023年第9期371-390,共20页
This article presents a 2017 LiDAR-DEM guided 1-m resolution examination of field-surveyed elevation and soil property variations (5 × 5 m spacings) conducted in 1977 across a hummocky New Brunswick field used fo... This article presents a 2017 LiDAR-DEM guided 1-m resolution examination of field-surveyed elevation and soil property variations (5 × 5 m spacings) conducted in 1977 across a hummocky New Brunswick field used for potato production. This examination revealed that the field incurred minor elevation differences likely due to upslope erosion as revealed through increasing Sand % and CF % with increasing elevation, and increasing Silt % along low-lying areas. Soil moisture, field capacity, permanent wilting and nitrate nitrogen (NO<sub>3</sub>-N) also increased at downslope locations. Directly as well as indirectly, soil pH, ammonium nitrogen (NH<sub>4</sub>-N), Caesium<sup>137</sup> (Cs<sup>137</sup>) and Mehlich-3 extracted Ca, Mg, K, Fe, Mn, Cu, and Zn were likewise affected by topographic location. Factor analyzing these variables led to: 1) a Soil Loss Factor that captured 24% of the textural variations;2) a Soil-Cropping Factor accounting for 16% of the N, P, K, Ca, Mg, Mn variations;3) a Soil Organic Matter (SOM) Factor relating 9% of the in-field variations for SOM, Fe, Zn, Cu to via organo-metal complexation and low NO<sub>3</sub>-N retention. Many of the topographic variations increased or decreased with the metric DEM-projected depth-to-water index (DTW) index. This index was set to 0 along DEM-derived flow channels with minimum upslope flow-accumulation areas of 0.1, 0.25, 0.5, 1 or 4 ha. Among these, the DTW > 4 ha threshold was useful for reproducing the textural variations, while the DTW > 0.25 ha threshold assisted in capturing trends pertaining to moisture retention and elemental concentrations. 展开更多
关键词 Field-Elevation Survey LiDAR 1-m DEM Flow Channels Depth-to-Water soil properties Factor Analysis
下载PDF
Shear resistance characteristics and influencing factors of root-soil composite on an alpine metal mine dump slope with different recovery periods
17
作者 PANG Jinghao LIANG Shen +5 位作者 LIU Yabin LI Shengwei WANG Shu ZHU Haili LI Guorong HU Xiasong 《Journal of Mountain Science》 SCIE CSCD 2024年第3期835-849,共15页
Artificial vegetation restoration is the main measure for vegetation restoration and soil and water conservation in alpine mine dumps on the Qinghai-Tibet Plateau,China.However,there are few reports on the dynamic cha... Artificial vegetation restoration is the main measure for vegetation restoration and soil and water conservation in alpine mine dumps on the Qinghai-Tibet Plateau,China.However,there are few reports on the dynamic changes and the influencing factors of the soil reinforcement effect of plant species after artificial vegetation restoration under different recovery periods.We selected dump areas of the Delni Copper Mine in Qinghai Province,China to study the relationship between the shear strength and the peak displacement of the root-soil composite on the slope during the recovery period,and the influence of the root traits and soil physical properties on the shear resistance characteristics of the root-soil composite via in situ direct shear tests.The results indicate that the shear strength and peak displacement of the rooted soil initially decreased and then increased with the increase of the recovery period.The shear strength of the rooted soil and the recovery period exhibited a quadratic function relationship.There is no significant function relationship between the peak displacement and the recovery period.Significant positive correlations(P<0.05)exists between the shear strength of the root-soil composite and the root biomass density,root volume density,and root area ratio,and they show significant linear correlations(P<0.05).There are no significant correlations(P>0.05)between the shear strength of the root-soil composite and the root length density,and the root volume ratio of the coarse roots to the fine roots.A significant negative linear correlation(P<0.05)exists between the peak displacement of the rooted soil and the coarse-grain content,but no significant correlations(P>0.05)with the root traits,other soil physical property indices(the moisture content and dry density of the soil),and slope gradient.The coarse-grain content is the main factor controlling the peak displacement of the rooted soil. 展开更多
关键词 Alpine mine dump Artificial vegetation restoration period Rooted soil Shear resistance characteristics Root traits soil physical properties
原文传递
Extended wet sieving method for determination of complete particle size distribution of general soils
18
作者 Shengnan Ma Yi Song +2 位作者 Jiawei Liu Xingyu Kang Zhongqi Quentin Yue 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期242-257,共16页
The traditional standard wet sieving method uses steel sieves with aperture?0.063 mm and can only determine the particle size distribution(PSD)of gravel and sand in general soil.This paper extends the traditional meth... The traditional standard wet sieving method uses steel sieves with aperture?0.063 mm and can only determine the particle size distribution(PSD)of gravel and sand in general soil.This paper extends the traditional method and presents an extended wet sieving method.The extended method uses both the steel sieves and the nylon filter cloth sieves.The apertures of the cloth sieves are smaller than 0.063 mm and equal 0.048 mm,0.038 mm,0.014 mm,0.012 mm,0.0063 mm,0.004 mm,0.003 mm,0.002 mm,and 0.001 mm,respectively.The extended method uses five steps to separate the general soil into many material sub-groups of gravel,sand,silt and clay with known particle size ranges.The complete PSD of the general soil is then calculated from the dry masses of the individual material sub-groups.The extended method is demonstrated with a general soil of completely decomposed granite(CDG)in Hong Kong,China.The silt and clay materials with different particle size ranges are further examined,checked and verified using stereomicroscopic observation,physical and chemical property tests.The results further confirm the correctness of the extended wet sieving method. 展开更多
关键词 Particle size distribution(PSD) General soil SILT CLAY Wet sieving Physical and chemical properties
下载PDF
Analysis on the development of chemically-improved soil in railway engineering
19
作者 Feng Chen Zhongjin Wang +1 位作者 Dong Zhang Shuai Zeng 《Railway Sciences》 2024年第2期216-226,共11页
Purpose-Explore the development trend of chemically-improved soil in railway engineering.Design/methodology/approach–In this paper,the technical standards home and abroad were analyzed.Laboratory test,field test and ... Purpose-Explore the development trend of chemically-improved soil in railway engineering.Design/methodology/approach–In this paper,the technical standards home and abroad were analyzed.Laboratory test,field test and monitoring were carried out.Findings–The performance design system of the chemically-improved soil should be established.Originality/value–On the basis of the performance design,the test methods and standards for various properties of chemically-improved soil should be established to evaluate the improvement effect and control the engineering quality. 展开更多
关键词 DURABILITY DEFORMATION Engineering properties Chemically-improved soil Performance design Test method
下载PDF
Study of Changes in Physiochemical Properties of Soil by the Addition of Cement
20
作者 M. Ramzan A. Farooqi 《Journal of Environmental Science and Engineering》 2011年第3期323-332,共10页
关键词 普通硅酸盐水泥 土壤理化性质 土壤有机质含量 茶园土壤 农业土壤 土壤样品 质量分数 土壤质量
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部