期刊文献+
共找到51篇文章
< 1 2 3 >
每页显示 20 50 100
Response of soil respiration to short-term changes in precipitation and nitrogen addition in a desert steppe
1
作者 MA Jinpeng PANG Danbo +4 位作者 HE Wenqiang ZHANG Yaqi WU Mengyao LI Xuebin CHEN Lin 《Journal of Arid Land》 SCIE CSCD 2023年第9期1084-1106,共23页
Changes in precipitation and nitrogen(N)addition may significantly affect the processes of soil carbon(C)cycle in terrestrial ecosystems,such as soil respiration.However,relatively few studies have investigated the ef... Changes in precipitation and nitrogen(N)addition may significantly affect the processes of soil carbon(C)cycle in terrestrial ecosystems,such as soil respiration.However,relatively few studies have investigated the effects of changes in precipitation and N addition on soil respiration in the upper soil layer in desert steppes.In this study,we conducted a control experiment that involved a field simulation from July 2020 to December 2021 in a desert steppe in Yanchi County,China.Specifically,we measured soil parameters including soil temperature,soil moisture,total nitrogen(TN),soil organic carbon(SOC),soil microbial biomass carbon(SMBC),soil microbial biomass nitrogen(SMBN),and contents of soil microorganisms including bacteria,fungi,actinomyces,and protozoa,and determined the components of soil respiration including soil respiration with litter(RS+L),soil respiration without litter(RS),and litter respiration(RL)under short-term changes in precipitation(control,increased precipitation by 30%,and decreased precipitation by 30%)and N addition(0.0 and 10.0 g/(m^(2)·a))treatments.Our results indicated that short-term changes in precipitation and N addition had substantial positive effects on the contents of TN,SOC,and SMBC,as well as the contents of soil actinomyces and protozoa.In addition,N addition significantly enhanced the rates of RS+L and RS by 4.8%and 8.0%(P<0.05),respectively.The increase in precipitation markedly increased the rates of RS+L and RS by 2.3%(P<0.05)and 5.7%(P<0.001),respectively.The decrease in precipitation significantly increased the rates of RS+L and RS by 12.9%(P<0.05)and 23.4%(P<0.001),respectively.In contrast,short-term changes in precipitation and N addition had no significant effects on RL rate(P>0.05).The mean RL/RS+L value observed under all treatments was 27.63%,which suggested that RL is an important component of soil respiration in the desert steppe ecosystems.The results also showed that short-term changes in precipitation and N addition had significant interactive effects on the rates of RS+L,RS,and RL(P<0.001).In addition,soil temperature was the most important abiotic factor that affected the rates of RS+L,RS,and RL.Results of the correlation analysis demonstrated that the rates of RS+L,RS,and RL were closely related to soil temperature,soil moisture,TN,SOC,and the contents of soil microorganisms,and the structural equation model revealed that SOC and SMBC are the key factors influencing the rates of RS+L,RS,and RL.This study provides further insights into the characteristics of soil C emissions in desert steppe ecosystems in the context of climate change,which can be used as a reference for future related studies. 展开更多
关键词 soil respiration litter respiration nitrogen deposition soil carbon soil microorganisms climate change desert steppe ecosystems
下载PDF
Seasonal Changes in Soil Respiration with An Elevation Gradient in Abies nephrolepis(Trautv.)Maxim.Forests in North China
2
作者 Zhijie Tian Xueying Jia +4 位作者 Tingting Liu Eryan Ma Lamei Xue Yanqiu Hu Qingrong Zheng 《Phyton-International Journal of Experimental Botany》 SCIE 2022年第7期1543-1556,共14页
Soil respiration(Rs)plays an important role in regulating carbon cycle of terrestrial ecosystems and presents temporal and spatial heterogeneity.Abies nephrolepis is a tree species that prefers the cold and wet enviro... Soil respiration(Rs)plays an important role in regulating carbon cycle of terrestrial ecosystems and presents temporal and spatial heterogeneity.Abies nephrolepis is a tree species that prefers the cold and wet environment and is mainly distributed in Northeast Asia and East Asia.The Rs variations of Abies nephrolepis forests communities are generally environmental-sensitive and can effectively reflect the adaptive responses of forest ecosystems to climate change.In this study,the growing-seasonal variations of Rs,soil temperature,soil water content and soil properties of Abies nephrolepis forests were analyzed along an altitude gradient(2000,2100,2200 and 2300 m)over two years on Wutai Mountain in North China.As the main results showed,soil respiration keeps the same change trend as soil temperature and reached peaks in July at 2000 m in 2019 and 2020.During 26th July to 25th October in 2019 and 27th May to 23rd October in 2020,on the whole,the soil temperature independently explained 76.2%of Rs variations while the soil water content independently explained 26.8%.Soil temperature and soil water content jointly explained 81.8%of Rs variations.Soil properties explained 61.8%and 69.6%of Rs variation in 2019 and 2020,respectively.Soil organic carbon content and soil enzyme activity had the signifi-cant(P<0.01)negative and positive relationships,respectively,with Rs variation.With altitudes evaluated from 2000 to 2300 m,soil respiration temperature sensitivity(Q10)and the soil organic carbon content increased by 12.4%and 10.4%,respectively,while invertase activity,cellulase activity and urease activity dropped by 41.2%,29.45%and 38.19%,respectively.The results demonstrate that(1)soil temperature is the major factor affecting Rs variations in Abies nephrolepis forests;(2)weakened microbial carbon metabolism in high-altitude areas results in the accumulation of soil organic carbon;(3)with a higher Q10,forest ecosystems in high-altitude areas might be more easily affected by climate change;(4)climate warming might accelerate the consumption of soil organic carbon sink in forest ecosystems,especially in high-altitude areas. 展开更多
关键词 soil respiration Abies nephrolepis ALTITUDE soil respiration temperature sensitivity soil organic carbon
下载PDF
Carbon inputs regulate the temperature sensitivity of soil respiration in temperate forests 被引量:3
3
作者 LIU Yulin LI Jiwei +6 位作者 HAI Xuying WU Jianzhao DONG Lingbo PAN Yingjie SHANGGUAN Zhouping WANG Kaibo DENG Lei 《Journal of Arid Land》 SCIE CSCD 2022年第9期1055-1068,共14页
Litter and root activities may alter the temperature sensitivity(Q_(10))of soil respiration.However,existing studies have not provided a comprehensive understanding of the effects of litter and root carbon inputs on t... Litter and root activities may alter the temperature sensitivity(Q_(10))of soil respiration.However,existing studies have not provided a comprehensive understanding of the effects of litter and root carbon inputs on the Q_(10)of soil respiration in different seasons.In this study,we used the trench method under in situ conditions to measure the total soil respiration(R_(total)),litter-removed soil respiration(R_(no-litter)),root-removed soil respiration(R_(no-root)),and the decomposition of soil organic matter(i.e.,both litter and root removal;R_(SOM))in different seasons of pioneer(Populus davidiana Dode)and climax(Quercus liaotungensis Mary)forests on the Loess Plateau,China.Soil temperature,soil moisture,litter biomass,fine root biomass,litter carbon,and root carbon were analyzed to obtain the drive mechanism of the Q_(10)of soil respiration in the two forests.The results showed that the Q_(10)of soil respiration exhibited seasonality,and the Q_(10)of soil respiration was higher in summer.The litter enhanced the Q_(10)of soil respiration considerably more than the root did.Soil temperature,soil moisture,fine root biomass,and litter carbon were the main factors used to predict the Q_(10)of different soil respiration components.These findings indicated that factors affecting the Q_(10)of soil respiration highly depended on soil temperature and soil moisture as well as related litter and root traits in the two forests,which can improve our understanding of soil carbon–climate feedback in global warming.The results of this study can provide reference for exploring soil respiration under temperate forest restoration. 展开更多
关键词 litter biomass root carbon soil respiration temperate forests Loess Plateau
下载PDF
CO flux of soil respiration in natural recovering karst abandoned farmland in Southwest China 被引量:2
4
作者 Yanwei Wang Weijun Luo +8 位作者 Guangneng Zeng Hanling Yang Meifang Wang Yina Lyu Anyun Cheng Lin Zhang Xianli Cai Jia Chen Shijie Wang 《Acta Geochimica》 EI CAS CSCD 2020年第4期527-538,共12页
To estimate carbon sequestration potential in the karst area,soil respiration in a natural recovering karst abandoned farmland in Shawan,Puding,Guizhou,southwest China was continuously and automatically monitored for ... To estimate carbon sequestration potential in the karst area,soil respiration in a natural recovering karst abandoned farmland in Shawan,Puding,Guizhou,southwest China was continuously and automatically monitored for more than two years.The results show that the CO2flux of soil respiration(2.63±1.89 lmol m^-2s-^1)is higher in the karst area than in non-karst areas under similar conditions but that regional value(1.32 lmol m-2s-1)is lower because of larger rock fragment coverage(~50%).A the same time,the temperature sensitivity of soil respiration(Q10)in this study area is significantly higher than that of non-karst areas under similar conditions.Soil respiration has an obvious temporal variation,which is reflected in a significant exponential relationship between soil respiration and soil temperature,but the relationship between soil respiration and soil moisture is very complex.Especially soil respiration has an obvious spatial variation,which is likely affected by different diffusion or water-rock reaction processes. 展开更多
关键词 Karst critical zone Abandoned land soil respiration Carbon cycle
下载PDF
Diurnal and seasonal dynamics of soil respiration in a Platycladus orientalis forest stand on the semiarid Loess Plateau, China 被引量:4
5
作者 SHI Wei-yu ZHANG Jian-guo +2 位作者 YAN Mei-jie GUAN Jin-hong DU Sheng 《地球环境学报》 2012年第6期1144-1148,共5页
Forest ecosystems on China's Loess Plateau are receiving increasing attention because of their special importance in carbon fixation and conservation of soil and water in the region.Soil respiration was investigat... Forest ecosystems on China's Loess Plateau are receiving increasing attention because of their special importance in carbon fixation and conservation of soil and water in the region.Soil respiration was investigated in Platycladus orientalis forest stands of the region at diurnal and seasonal scales.The daily and seasonal average values of soil respiration were 2.53μmol·m^(-2)·s^(-1)and 3.78μmol·m^(-2)·s^(-1),respectively.On a diurnal and seasonal scale,the variations of soil respiration in the P.orientalis forest show a one-peak pattern.The diurnal dynamics of soil respiration were mainly driven by soil temperature.However,the relationship between soil respiration and soil temperature was not significant,mainly because of the hysteresis effect of soil respiration on soil temperature.Soil moisture plays another dominant role in the ecosystem carbon balance,but was not affected by soil temperature in P.orientalis forest on the semiarid Loess Plateau. 展开更多
关键词 Loess Plateau Platycladus orientalis SEMIARID soil respiration
下载PDF
Response of soil respiration to environmental and photosynthetic factors in different subalpine forest-cover types in a loess alpine hilly region 被引量:1
6
作者 Yuanhang Li Sha Lin +3 位作者 Qi Chen Xinyao Ma Shuaijun Wang Kangning He 《Journal of Forestry Research》 SCIE CAS CSCD 2022年第2期653-665,共13页
Soil respiration(Rs)is important for transport-ing or fixing carbon dioxide from the atmosphere,and even diminutive variations can profoundly influence the carbon cycle.However,the R_(s) dynamics in a loess alpine hil... Soil respiration(Rs)is important for transport-ing or fixing carbon dioxide from the atmosphere,and even diminutive variations can profoundly influence the carbon cycle.However,the R_(s) dynamics in a loess alpine hilly region with representative sensitivity to climate change and fragile ecology remains poorly understood.This study investigated the correlation and degree of control between R_(s) and its photosynthetic and environmental factors in five subalpine forest cover types.We examined the correlations between R_(s) and variables temperature(T_(10)) and soil moisture content at 10 cm depth(W_(10)),net photosynthetic rate(P_(n))and soil properties to establish multiple models,and the variables were measured for diurnal and monthly vari-ations from September 2018 to August 2019.The results showed that soil physical factors are not the main drivers of R_(s) dynamics at the diel scale;however,the trend in the monthly variation in R_(s) was consistent with that of T_(10)and P_(n).Further,R_(s) was significantly affected by pH,providing further evidence that coniferous forest leaves contribute to soil acidification,thus reducing R_(s).Significant exponential and linear correlations were established between R_(s) and T_(10)and W_(10),respectively,and R_(s) was positively correlated with P_(n).Accordingly,we established a two-factor model and a three-factor model,and the correlation coefficients(R_(2))was improved to different degrees compared with models based only on T_(10) and W_(10).Moreover,temperature sensitivity(Q_(10))was the highest in the secondary forest and lowest in the Larix principis-rupprechtii forest.Our findings suggest that the control of R_(s) by the environment(moisture and tempera-ture)and photosynthesis,which are interactive or comple-mentary effects,may influence spatial and temporal homeo-stasis in the region and showed that the models appropriately described the dynamic variation in R_(s) and the carbon cycle in different forest covers.In addition,total phosphorus(TP)and total potassium(TK)significantly affected the dynamic changes in R_(s).In summary,interannual and seasonal variations in forest R_(s) at multiple scales and the response forces of related ecophysiological factors,especially the interactive driving effects of soil temperature,soil moisture and photo-synthesis,were clarified,thus representing an important step in predicting the impact of climate change and formulating forest carbon management policies. 展开更多
关键词 Loess alpine hilly region soil respiration Environmental factor Photosynthesis factor Q_(10) Two-factor model Three-factor model
下载PDF
Spatial Variations of Soil Respiration in Arid Ecosystems 被引量:1
7
作者 Gang Liu Rei Sonobe Quan Wang 《Open Journal of Ecology》 2016年第4期192-205,共14页
Soil respiration releases a major carbon flux back to atmosphere and thus plays an important role in global carbon cycling. Soil respiration is well known for its significant spatial variation in terrestrial ecosystem... Soil respiration releases a major carbon flux back to atmosphere and thus plays an important role in global carbon cycling. Soil respiration is well known for its significant spatial variation in terrestrial ecosystems, especially in fragile ecosystems of arid land, where vegetation is distributed sparsely and the climate changes dramatically. In this study, soil respiration in three typical arid ecosystems: desert ecosystem (DE), desert-farmland transition ecosystem (TE) and farmland ecosystem (FE) in an arid area of northwestern China were studied for their spatial variations in 2012 and 2013. Along with soil respiration (SR), soil surface temperature (ST), soil moisture (SM) and soil electrical conductivity (ECb) were also recorded to investigate the spatial variations and the correlations among them. The results revealed that averaged soil respiration rate was much lower in DE than those in TE and FE. No single factor could adequately explain the variation of soil respiration, except a negative relationship between soil temperature and soil respiration in FE (P < 0.05). Geostatistical analysis showed that the spatial heterogeneity of soil respiration in DE was insignificant but notably in both TE and FE, especially in FE, which was mainly attributed to the different vegetation or soil moisture characteristics in the three ecosystems. The results obtained in this study will help to provide a better understanding on spatial variations of soil respiration and soil properties in arid ecosystems and also on macroscale carbon cycling evaluations. 展开更多
关键词 soil respiration Spatial Variation Arid Ecosystems GEOSTATISTICS TEMPERATURE MOISTURE
下载PDF
Contribution of root respiration to total soil respiration during non-growing season in mine reclaimed soil with different covering-soil thicknesses
8
作者 Min Chen Xiaoyang Chen +3 位作者 Zhiyong Hu Tingyu Fan Shiwen Zhang Ying Liu 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第5期1130-1137,共8页
An accurate assessment of root respiration in mine reclaimed soil is important for effectively evaluating mining area ecosystems.This study investigated dynamic changes in root respiration and the contribution of root... An accurate assessment of root respiration in mine reclaimed soil is important for effectively evaluating mining area ecosystems.This study investigated dynamic changes in root respiration and the contribution of root respiration to total soil respiration(R_(r)/R_(t) ratio)during the non-growing season in mine reclaimed soil,with different covering-soil thicknesses.According to the covering-soil thicknesses,the study area was divided into four sites:10-25 cm(site A),25-45 cm(site B),45-55 cm(site C),and 55-65 cm(site D).From November 2017 to April 2018(except February in 2018),the soil respiration,root respiration,temperature at 5 cm,water content,and root biomass were measured.The results show that soil temperature and root respiration exhibited similar diurnal and monthly variations.The root respiration is strongly influenced by soil temperature during the non-growing season,with an exponential and positive relationship(P<0.001).Root respiration varies with the covering-soil thickness and is greatest with a covering-soil thickness of 25-45 cm.The R_(r)/R_(t) ratio also exhibits monthly variations.During the non-growing season,the mean value of the R_(r)/R_(t) ratio is 51.15%in mine reclaimed soil.The study indicates that root respiration is the primary source of soil respiration and is an important factor for estimating the potential emission of soil CO_(2) from mine reclaimed soil at the regional scale. 展开更多
关键词 Root respiration soil respiration soil temperature soil water content Root biomass
下载PDF
Seasonal variations in temperature sensitivity of soil respiration in a larch forest in the Northern Daxing’an Mountains in Northeast China
9
作者 Lin Yang Qiuliang Zhang +4 位作者 Zhongtao Ma Huijun Jin Xiaoli Chang Sergey S.Marchenko Valentin V.Spektor 《Journal of Forestry Research》 SCIE CAS CSCD 2022年第3期1061-1070,共10页
Temperature sensitivity of respiration of forest soils is important for its responses to climate warming and for the accurate assessment of soil carbon budget. The sensitivity of temperature (T_(i)) to soil respiratio... Temperature sensitivity of respiration of forest soils is important for its responses to climate warming and for the accurate assessment of soil carbon budget. The sensitivity of temperature (T_(i)) to soil respiration rate (R_(s)), and Q_(10) defined by e^(10(lnRs−lna)/Ti) has been used extensively for indicating the sensitivity of soil respiration. The soil respiration under a larch (Larix gmelinii) forest in the northern Daxing’an Mountains, Northeast China was observed in situ from April to September, 2019 using the dynamic chamber method. Air temperatures (T_(air)), soil surface temperatures (T_(0cm)), soil temperatures at depths of 5 and 10 cm (T_(5cm) and T_(10cm), respectively), and soil-surface water vapor concentrations were monitored at the same time. The results show a significant monthly variability in soil respiration rate in the growing season (April–September). The Q_(10) at the surface and at depths of 5 and 10 cm was estimated at 5.6, 6.3, and 7.2, respectively. The Q_(10@10 cm) over the period of surface soil thawing (Q_(10@10 cm, thaw) = 36.89) were significantly higher than that of the growing season (Q_(10@10 cm, growth )= 3.82). Furthermore, the Rs in the early stage of near-surface soil thawing and in the middle of the growing season is more sensitive to changes in soil temperatures. Soil temperature is thus the dominant factor for season variations in soil respiration, but rainfall is the main controller for short-term fluctuations in respiration. Thus, the higher sensitivity of soil respiration to temperature (Q_(10)) is found in the middle part of the growing season. The monthly and seasonal Q_(10) values better reflect the responsiveness of soil respiration to changes in hydrometeorology and ground freeze-thaw processes. This study may help assess the stability of the soil carbon pool and strength of carbon fluxes in the larch forested permafrost regions in the northern Daxing’an Mountains. 展开更多
关键词 soil respiration Dynamic chamber method Ground thawing Major growth period soil temperature
下载PDF
Laboratory simulation of soil respiration response to environmental conditions in intertidal zones of Jiangsu Province,China
10
作者 Peng Wang Xia Shen +2 位作者 Zu-lin Hua Xiao-dong Liu Yi-xin Ma 《Water Science and Engineering》 EI CAS CSCD 2022年第2期134-140,共7页
As major contributor to the blue carbon sink,intertidal zones play a crucial role in the global carbon cycle.In recent years,more attention has been given to the carbon cycle in intertidal wetlands.However,due to high... As major contributor to the blue carbon sink,intertidal zones play a crucial role in the global carbon cycle.In recent years,more attention has been given to the carbon cycle in intertidal wetlands.However,due to highly variable and uncertain environmental conditions,it is difficult to clarify the quantitative relationship between soil respiration and environmental factors through in-situ experiments.In this study,the response of soil respiration characteristics to variations in the temperature and water table was investigated using a monitoring apparatus of CO_(2)flux at the soil-air interface in the intertidal zone.The results showed that soil respiration flux was significantly correlated with temperature,and the correlation best fitted the DoseResp function.Meanwhile,the respiration flux was enhanced with the descent of water table,a relationship could be described by a quadratic function.The effect of the water table on soil respiration became more pronounced with the rise of temperature.These results provide significant clarification of the impact of human activities on the carbon cycle in bare intertidal zones and as well as support for numerical simulations of the carbon cycle in bare intertidal zones. 展开更多
关键词 Intertidal zone Carbon flux soil respiration Human activities Water table
下载PDF
Influence of Skidding Operation on Forest Soil Respiration for Small Four-wheeled Tractors
11
作者 De-Ling Yang Li-Hai Wang +1 位作者 Wen-Shu Lin Shu-E Ji 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第1期97-100,共4页
The TJSD-750-Ⅱ type compactness measurement instrument and Li-8100 soil carbon flux automatic measurement system are used to measure soil compactness and soil respiration rate at different skidding roads. A regressio... The TJSD-750-Ⅱ type compactness measurement instrument and Li-8100 soil carbon flux automatic measurement system are used to measure soil compactness and soil respiration rate at different skidding roads. A regression model is established to analyze the correlation between soil respiration and its influencing factors. The results shows that the soil compaction on the main skidding road and sub skidding roads are larger than the control points, and the soil compaction on the main skidding road is larger than that on sub skidding roads. The higher the soil compactness is, the lower the rate of soil respiration is. This also leads to the lower sensitivity of soil respiration rate influenced by temperature and humidity. 展开更多
关键词 skidding road soil compaction soil respiration
下载PDF
Study on Soil Respiration Characteristics and Carbon Balance of <i>Kobresia pygmaea</i>Meadow in Qinghai-Tibet Plateau, China
12
作者 Yuejun Fan Xiyun Chang +2 位作者 Deping Zhao Xiangyang Hou Xin Li 《Journal of Environmental Protection》 2020年第8期636-647,共12页
Although soil respiration is the largest contributor to C flux from terrestrial ecosystems to the atmosphere, our understanding of its characteristics and carbon budget in alpine meadow is rather limited because of ex... Although soil respiration is the largest contributor to C flux from terrestrial ecosystems to the atmosphere, our understanding of its characteristics and carbon budget in alpine meadow is rather limited because of extremely geographic situation. This study was designed to examine soil CO<sub>2</sub> efflux characteristics of diurnal and seasonal variation, thus obtaining estimates of carbon balance of <em>Kobresia pygmaea</em> meadow in Qinghai-Tibet plateau. The results showed that the soil respiration of diurnal and seasonal rate changed little in growing season and was mainly affected by temperature, and single peak curve that showed afternoon appeared. Composite model which was set by soil respiration rate, soil moisture content and temperature (atmospheric temperature and soil temperature) could explain better the variations of soil respiration rate. The variation range of <em>Q</em><sub>10</sub> ranged from 1.28 to 2.34, which was sensitive to temperature in green-up period and late growth stage, and decreased in growth peak period. Meanwhile, during the growing seasons the observed amount of annual carbon fixation via primary production for <em>Kobresia pygmaea</em> meadow ecosystem was about 120.21 g C<span style="white-space:nowrap;">·</span>m<sup>-2</sup><span style="white-space:nowrap;">·</span>a<sup>-1</sup>. The carbon dioxide output via soil heterotrophic respiration was about 37.54 g C<span style="white-space:nowrap;">·</span>m<sup>-2</sup><span style="white-space:nowrap;">·</span>a<sup>-1</sup>. So carbon budget had more input than output. The <em>Kobresia pygmaea</em> meadow ecosystem has stronger potential to absorb carbon dioxide, it was a sink of atmospheric CO<sub>2</sub>, and the plant community had a net carbon gain of 82.67 g C<span style="white-space:nowrap;">·</span>m<sup>-2</sup><span style="white-space:nowrap;">·</span>a<sup>-1</sup>. 展开更多
关键词 soil respiration Kobresia pygmaea Meadow Carbon Balance/Budget Qinghai-Tibet Plateau
下载PDF
Warming Changed Soil Respiration Dynamics of Alpine Meadow Ecosystem on the Tibetan Plateau
13
作者 Junfeng Wang Ziqiang Yuan +1 位作者 Qingbai Wu Rashad Rafique 《Journal of Environmental & Earth Sciences》 2019年第2期7-17,共11页
Alpine meadow system underlain by permafrost on the Tibetan Plateau contains vast soil organic carbon and is sensitive to global warming.However,the dynamics of annual soil respiration(Rs)under long-term warming and t... Alpine meadow system underlain by permafrost on the Tibetan Plateau contains vast soil organic carbon and is sensitive to global warming.However,the dynamics of annual soil respiration(Rs)under long-term warming and the determined factors are still not very clear.Using opentop chambers(OTC),we assessed the effects of two-year experimental warming on the soil CO2 emission and the Q10 value(temperature sensitivity coefficient)under different warming magnitudes.Our study showed that the soil CO2 efflux rate in the warmed plots were 1.22 and 2.32 times higher compared to that of controlled plots.However,the Q10 value decreased by 45.06%and 50.34%respectively as the warming magnitude increased.These results suggested that soil moisture decreasing under global warming would enhance soil CO2 emission and lower the temperature sensitivity of soil respiration rate of the alpine meadow ecosystem in the permafrost region on the Tibetan Plateau.Thus,it is necessary to take into account the combined effect of ground surface warming and soil moisture decrease on the Rs in order to comprehensively evaluate the carbon emissions of the alpine meadow ecosystem,especially in short and medium terms. 展开更多
关键词 soil respiration Alpine meadow Experimental warming Open-top chamber
下载PDF
Moso bamboo expansion decreased soil heterotrophic respiration but increased arbuscular mycorrhizal mycelial respiration in a subtropical broadleaved forest 被引量:1
14
作者 Wenhao Jin Jiaying Tu +7 位作者 Qifeng Wu Liyuan Peng Jiajia Xing Chenfei Liang Shuai Shao Junhui Chen Qiufang Xu Hua Qin 《Forest Ecosystems》 SCIE CSCD 2023年第3期337-347,共11页
Moso bamboo(Phyllostachys Pubescens)expansion into adjacent forests has been widely reported to affect plant diversity and its association with mycorrhizal fungi in subtropical China,which will likely have significant... Moso bamboo(Phyllostachys Pubescens)expansion into adjacent forests has been widely reported to affect plant diversity and its association with mycorrhizal fungi in subtropical China,which will likely have significant impacts on soil respiration.However,there is still limited information on how Moso bamboo expansion changes soil respiration components and their linkage with microbial community composition and activity.Based on a mesh exclusion method,soil respirations derived from roots,arbuscular mycorrhizal(AM)mycelium,and free-living microbes were investigated in a pure Moso bamboo forest(expanded),an adjacent broadleaved forest(nonexpanded),and a mixed bamboo-broadleaved forest(expanding).Our results showed that bamboo expansion decreased the cumulative CO_(2)effluxes from total soil respiration,root respiration and soil heterotrophic respiration(by 19.01%,30.34%,and 29.92%on average),whereas increased those from AM mycelium(by 78.67%in comparison with the broadleaved forests).Bamboo expansion significantly decreased soil organic carbon(C)content,bacterial and fungal abundances,and enzyme activities involved in C,N and P cycling whereas enhanced the interactive relationships among bacterial communities.In contrast,the ingrowth of AM mycelium increased the activities ofβ-glucosidase and N-acetyl-β-glucosaminidase and decreased the interactive relationships among bacterial communities.Changes in soil heterotrophic respiration and AM mycelium respiration had positive correlations with soil enzyme activities and fungal abundances.In summary,our findings suggest that bamboo expansion decreased soil heterotrophic respiration by decreasing soil microbial activity but increased the contribution of AM mycelial respiration to soil C efflux,which may potentially increase soil C loss from AM mycelial pathway. 展开更多
关键词 Bamboo expansion soil respiration soil organic carbon Plant C allocation Arbuscular mycorrhizal fungi
下载PDF
Warming Stimulated Soil Respiration in a Subalpine Meadow in North China 被引量:1
15
作者 LUO Shuzheng ZHANG Jianhua +3 位作者 ZHANG Hufang ZHENG Qingrong GAO Yongping LI Meihong 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2023年第1期77-87,共11页
In order to explore the response of soil respiration in grassland to global warming,we carried out a warming experiment with open top chambers(OTCs)in the subalpine meadow,Mount Wutai in north China.Our results showed... In order to explore the response of soil respiration in grassland to global warming,we carried out a warming experiment with open top chambers(OTCs)in the subalpine meadow,Mount Wutai in north China.Our results showed in the subalpine meadow across 2500-2700 m above the sea level(ASL),with OTCs,soil respiration increased by 2.00μmol·m^(-2)·s^(-1)as soil temperature increased by 1.25℃on average.Warming decreased soil moisture over the experiment periods except in October 2019 when snow melted in OTCs.Warming effect on soil respiration peaked at 178.31%in October 2019.In control and warming treatment,based on exponential regression equations,soil temperature alone accounted for 85.3%and 61.2%of soil respiration variation,respectively.In control treatment soil moisture alone explained 23.2%of soil respiration variation based on the power regression equation while in warming treatment they were not significantly correlated with each other.The response of soil respiration to warming relied on altitudes as well as the time of the year,but was not inhibited by soil moisture,labile carbon pool,and available nitrogen.We concluded soil temperature was the main factor influencing soil respiration,and global warming would stimulate soil respiration in the subalpine meadows of Mount Wutai in the future.Our analysis provided new data on characteristics and mechanisms of the response of soil respiration to warming,and helped to further understand the relationship between carbon cycle and climate change. 展开更多
关键词 global warming soil respiration open top chambers(OTCs) the subalpine meadow Mount Wutai
原文传递
Impact of oxygation on soil respiration, yield and water use efficiency of three crop species 被引量:46
16
作者 Xinming Chen Jay Dhungel +3 位作者 Surya P.Bhattarai Manouchehr Torabi Lance Pendergast David J.Midmore 《Journal of Plant Ecology》 SCIE 2011年第4期236-248,共13页
Oxygation refers to irrigation of crops with aerated water,through air injection using the venturi principle or the supply of hydrogen peroxide in the root zone,both using subsurface drip irrigation(SDI)system.Oxygati... Oxygation refers to irrigation of crops with aerated water,through air injection using the venturi principle or the supply of hydrogen peroxide in the root zone,both using subsurface drip irrigation(SDI)system.Oxygation improves water use efficiency(WUE),producing more yield and,and therefore,optimizes the use of drip and SDI.But the efficiency of oxygation is quite possibly dependent on a number of factors.The primary objective of this study was,therefore,to quantify the effects of oxygation,emitter depths and soil type on crop root zone oxygen content,soil respiration,plant physiological response,biomass yield,quality and WUE of three crop species.Methods This study investigated the potential of oxygation to enhance soil respiration,plant growth,yield and water use efficiencies(WUE)of cotton and wheat in experiments in enclosed heavy-duty concrete troughs(tubs)and pineapple and cotton in field experiments.Experimental treatments in tubs for wheat included comparisons between two soil types(vertisol and ferrosol)and superimposed were two oxygation methods(Mazzei air injector and Seair Diffusion System)compared to a control,and for cotton,emitters at two depths using Mazzei air injectors were compared to a control.The field experiments compared Mazzei air injectors and a control for cotton in Emerald and pineapple in Yeppoon,both in central Queensland,Australia.Important findings In all experiments,soil oxygen content and soil respiration markedly increased in response to the oxygation treatments.The O2 concentration in the crop root zone increased by 2.4–32.6%,for oxygation compared to control at the same depth.The soil respiration increased by 42–100%.The number of wheat ears,leaf dry weight and total dry matter were significantly greater in Mazzei and Seair oxygation compared to the control.Fresh biomass of wheat increased by 11 and 8%,and dry weight of wheat increased by 8 and 3%in Mazzei and Seair oxygation treatments compared to the control,respectively.Likewise,the irrigation water use efficiency increased with oxygation compared to the control in wheat.The yield,WUE and number of other physiological parameters in wheat were enhanced in vertisol compared to ferrosol.The seed cotton yield in the tub experiment increased with oxygation by 14%,and significant differences for fresh biomass,dry matter and yield were also noted between oxygation and the control in the field.Lint yield and WUE both increased by 7%using Mazzei in the cotton field trial during 2008–09.There were significant effects of oxygation on pineapple fresh biomass,and dry matter weight,industry yield and a number of quality parameters were significantly improved.The total fruit yield and marketable increased by 17 and 4%and marketable WUE increased by 3%using Mazzei.Our data suggest that the benefits of oxygation are notable not only for dicotyledonous cotton but also for monocotyledonous wheat and pineapple representing different rooting morphologies and CO_(2) fixation pathways. 展开更多
关键词 oxygation subsurface drip irrigation soil respiration YIELD water use efficiencies
原文传递
Soil respiration is driven by fine root biomass along a forest chronosequence in subtropical China 被引量:13
17
作者 Chao Wang Yinlei Ma +4 位作者 Stefan Trogisch Yuanyuan Huang Yan Geng Michael Scherer-Lorenzen Jin-Sheng He 《Journal of Plant Ecology》 SCIE CSCD 2017年第1期36-46,共11页
Aims Soil respiration(Rs)is a major process controlling soil carbon loss in forest ecosystems.However,the underlying mechanisms leading to variation in Rs along forest successional gradients are not well understood.In... Aims Soil respiration(Rs)is a major process controlling soil carbon loss in forest ecosystems.However,the underlying mechanisms leading to variation in Rs along forest successional gradients are not well understood.In this study,we investigated the effects of biotic and abiotic factors on Rs along a forest successional gradient in southeast China.Methods We selected 16 plots stratified by forest age,ranging from 20 to 120 years.In each plot,six shallow collars and six deep collars were permanently inserted into the soil.Shallow and deep collars were used to measure Rs and heterotrophic respiration(Rh),respectively.Autotrophic soil respiration(Ra)was estimated as the difference between Rs and Rh.Litter layer respiration(R_(L))was calculated by subtracting soil respiration measured in collars without leaf litter layer(R_(NL))from Rs.Rs was measured every 2 months,and soil temperature(ST)and soil volumetric water content(SVWC)were recorded every hour for 19 months.We calculated daily Rs using an exponential model dependent on ST.Daily Rs was summed to obtain cumulative annual Rs estimates.Structural equation modelling(SEM)was applied to identify the drivers of Rs during forest succession.Important Findings Rs showed significant differences among three successive stages,and it was the highest in the young stage.Ra was higher in the young stage than in the medium stage.Cumulative annual Rs and Ra peaked in the young and old stages,respectively.Cumulative annual Rh and respiration measured from soil organic matter(R_(SOM))decreased,whereas R_(L)increased with forest age.The SEM revealed that cumulative annual Rs was influenced by fine root biomass and SVWC.Our results indicated that the dominant force regulating Rs on a seasonal scale is ST;however,on a successional scale,belowground carbon emerges as the dominant influential factor. 展开更多
关键词 forest succession soil respiration fine root biomass soil temperature
原文传递
Temperature and substrate availability regulate soil respiration in the tropical mountain rainforests,Hainan Island,China 被引量:8
18
作者 Zhang Zhou Lai Jiang +4 位作者 Enzai Du Huifeng Hu Yide Li Dexiang Chen Jingyun Fang 《Journal of Plant Ecology》 SCIE 2013年第5期325-334,共10页
Aims Tropical forest plays a key role in global C cycle;however,there are few studies on the C budget in the tropical rainforests in Asia.This study aims to(i)reveal the seasonal patterns of total soil respiration(R_(... Aims Tropical forest plays a key role in global C cycle;however,there are few studies on the C budget in the tropical rainforests in Asia.This study aims to(i)reveal the seasonal patterns of total soil respiration(R_(T)),litter respiration(R_(L))and soil respiration without surface organic litter(R_(NL))in the primary and secondary Asian tropical mountain rainforests and(ii)quantify the effects of soil temperature,soil moisture and substrate availability on soil respiration.Methods The seasonal dynamics of soil CO_(2) efflux was measured by an automatic chamber system(Li-8100),within the primary and secondary tropical mountain rainforests located at the Jianfengling National Reserve in Hainan Island,China.The litter removal treatment was used to assess the contribution of litter to belowground CO_(2) production.Important Findings The annual R_(T) was higher in the primary forest(16.73±0.87 Mg C ha−1)than in the secondary forest(15.10±0.26 Mg C ha−1).The rates of R_(T),R_(NL) and R_(L) were all significantly higher in the hot and wet season(May–October)than those in the cool and dry season(November–April).Soil temperature at 5cm depth could explain 55–61%of the seasonal variation in R_(T),and the temperature sensitivity index(Q_(10))ranked by R_(L)(Q_(10)=3.39)>R_(T)(2.17)>R_(NL)(1.76)in the primary forest and by R_(L)(4.31)>R_(T)(1.86)>R_(NL)(1.58)in the secondary forest.The contribution of R_(L) to R_(T) was 22–23%,while litter input and R_(T) had 1 month time lag.In addition,the seasonal variation of R_(T) was mainly determined by soil temperature and substrate availability.Our findings suggested that global warming and increased substrate availability are likely to cause considerable losses of soil C in the tropical forests. 展开更多
关键词 soil respiration soil temperature LITTER tropical mountain rainforest
原文传递
Interactive effects of understory removal and fertilization on soil respiration in subtropical Eucalyptus plantations 被引量:6
19
作者 Songze Wan Chenlu Zhang +7 位作者 Yuanqi Chen Jie Zhao Xiaolin Zhu Jianping Wu Lixia Zhou Yongbiao Lin Zhanfeng Liu Shenglei Fu 《Journal of Plant Ecology》 SCIE 2015年第3期284-290,共7页
Aims It has been well recognized that understory vegetation plays an important role in driving forest ecosystem processes and functioning.In subtropical plantation forests,understory removal and fertiliza-tion have be... Aims It has been well recognized that understory vegetation plays an important role in driving forest ecosystem processes and functioning.In subtropical plantation forests,understory removal and fertiliza-tion have been widely applied;however,our understanding on how understory removal affects soil respiration and how the process is regulated by fertilization is limited.Here,we conducted an under-story removal experiment combined with fertilization to evaluate the effects of the two forest management practices and their inter-actions on soil respiration in subtropical forest in southern China.Methods The study was conducted in a split-plot design with fertilization as the whole-plot factor,understory removal as the subplot factor and block as the random factor in subtropical Eucalyptus plantations.In total,there were four treatments:control with unfertilized and intact understory(CK),understory removal but without fertilization(UR),with fertilization but without understory removal(FT)and with fertilization+understory removal(FT+UR).Eucalyptus above-and belowground biomass increment,fine root biomass,soil tempera-ture,soil moisture and soil respiration were measured in the present study.understory respiration(Ru)was quantified in different ways:Ru=RCK−Ru or Ru=RFT−R(FT+u);fertilization increased soil respiration(RFI)was also quantified in different ways:RFI=RFT−RCK or RFI=R(FT+u)−Ru.Important Findingsover a 2-year experiment,our data indicate that understory removal significantly decreased soil respiration,while fertilization increased soil respiration.understory removal decreased soil respiration by 28.8%under fertilization,but only 15.2%without fertilization.Fertilization significantly increased soil respiration by 23.6%with the presence of understory vegetation,and only increased by 3.7%when understory was removed,indicating that fertilization increased soil respiration mainly by increasing the contribution of the understory.our study advances our understanding of the interactive effects of understory management and fertilization on soil respiration in subtropical plantations. 展开更多
关键词 understory removal FERTILIZATION interactive effects soil respiration subtropical plantation
原文传递
Soil erosion affects variations of soil organic carbon and soil respiration along a slope in Northeast China 被引量:5
20
作者 Tong Li Haicheng Zhang +4 位作者 Xiaoyuan Wang Shulan Cheng Huajun Fang Gang Liu Wenping Yuan 《Ecological Processes》 SCIE EI 2019年第1期360-369,共10页
Background:Although soil erosion plays a key role in the carbon cycle,a holistic and mechanistic understanding of the soil erosion process within the cycle is still lacking.The aim of this study was therefore to impro... Background:Although soil erosion plays a key role in the carbon cycle,a holistic and mechanistic understanding of the soil erosion process within the cycle is still lacking.The aim of this study was therefore to improve our mechanistic understanding of soil organic carbon(SOC)and soil respiration dynamics through an experiment conducted in an eroding black soil farmland landscape in Northeast China.Results:The depositional profiles store 5.9 times more SOC than the eroding profiles and 3.3 times more SOC than the non-eroding profiles.A linear correlation between the SOC and 137Cs(Caesium-137)was observed in our study,suggesting that the SOC decreased with increased soil erosion.Furthermore,the fractions of intermediate C and the microaggregate C were lowest at the eroding position and highest at the depositional position.In the depositional topsoil,the input of labile materials plays a promotional role in soil respiration.Conversely,in the subsoil(i.e.,below 10 cm),the potential mineralization rates were lowest at the depositional position—due to effective stabilization by physical protection within soil microaggregates.The field results of soil surface respiration also suggest that the depositional topsoil SOC is prone to be mineralized and that SOC at this depositional context is stabilized at subsoil depth.In addition,the high water contents at the depositional position can limit the decomposition rates and stabilize the SOC at the same time.Conclusions:The findings from this study support that a majority of the SOC at footslope is stored within most of the soil profile(i.e.,below 10 cm)and submitted to long-term stabilization,and meanwhile support that the depositional profile emits more CO2 than the summit due to its high amount and quality of SOC. 展开更多
关键词 soil erosion soil organic carbon soil respiration Sloping farmland
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部